-
近年来, 我国经济的飞速发展推动了城市群聚集度不断提高, 其中京津冀、长三角、珠三角形成的特大城市群是典型代表. 城市群的聚集在产生经济规模效应的同时, 也带来了一系列的社会和环境问题, 尤其以大气环境影响最为显著[1-3], 城市群光化学反应引发的复合型污染使得污染治理变得更为复杂[4-6]. 大气氧化能力的大小及其变化是区域污染、全球变化以及生态环境影响的关键因素[7-8]. 大气中的自由基是最重要的大气氧化剂, 通常将大气中OH、HO2、RO2等自由基合称为ROx, 对流层中几乎所有可能被氧化的痕量气体都主要通过ROx反应而被转化和去除, ROx是局地大气自清洁能力的一个重要表征指标[9-10]. 挥发性有机化合物(VOCs)是光化学反应中重要的参与物与前体物, 对大气中ROx平衡有关键性作用[11-12]. VOCs源强的不确定性, 导致VOCs对ROx生成影响研究不够深入. VOCs在ROx形成过程中的重要作用已被外场科学试验和模式模拟所证实[11, 13], 国外学者对VOCs在ROx循环转化中的机制和作用的分析和讨论逐步增多[14-16], 国内曾开展VOCs对ROx收支平衡影响的分析[8, 12], 对HOx自由基在大气中的循环过程进行了讨论. 但总体而言, 定量分析, 尤其是模式定量计算VOCs源强不确定性对ROx生成和控制影响的研究在国内鲜见报道.
本研究修改和完善了WRF-Chem模式中的ROx化学反应过程,输出相关过程的生成率及损耗率,并补充输出特定诊断量(如Ln/Q), 系统的定量计算了VOCs源强对ROx生成和收支平衡的影响,有助于对开展快速城市群建设背景下大气环境效应,特别是O3污染防控的研究体系完善.
VOCs源强不确定性对ROx平衡影响的模拟分析
WRF-chem simulations of the impacts of uncertainty in VOC emissions on ROx budgets
-
摘要: 本文对区域空气质量模式WRF-Chem主要化学模块进行了改进,定量输出大气关键自由基(ROx=OH+HO2+RO2)参与反应的主要化学过程生成率、损耗率与相关收支平衡量,为无法定量分析和比较VOCs源强的不确定性对ROx平衡影响提供了一种新的定量分析方法,由此可减小污染防治中臭氧生成敏感区的误判,有助于完善开展快速城市群建设背景下大气环境效应的研究体系. 人为VOCs排放源(AVOCs)增加(减少)68%后,三大城市群中OH、HO2和RO2生成率增幅达到4%—280%(对应减少为2%—80%),以北京、上海、广州为三大城市群代表的城市ROx初级生成率增幅达到35%—48%(对应减少为26%—39%). 3个城市中,ROx生成率贡献最大的两类化学过程均为O1D+H2O 和HCHO,ALD2等的光解,ROx损耗主要关联的化学过程为OH+NO2(占比达71%—85%). 分析表明,当AVOCs源增加68%之后,ROx白天月平均浓度在京津冀、长三角、珠三角的增幅OH为4%—48%、4%—52%与4%—44%,HO2为10%—120%、10%—140%与10%—120%,RO2为20%—280%、20%—240%与10%—140%,以大气边界层内ROx白天经向月均值增幅计算,OH为1%—5%,HO2为4%—16%,RO2为6%—26%. AVOCs源排放量增加68%后,导致ROx收支平衡发生变化,直接影响与NOx反应的ROx的损耗率(Ln)和ROx的生成率(Q)值,部分地区从VOCs敏感区转变为NOx敏感区,这意味着AVOCs排放源的低估导致VOCs敏感区的夸大,从而降低O3调控对策的有效性,从而也说明VOCs的不确定性导致的ROx的变化对局地污染防控策略制定影响重大.
-
关键词:
- 挥发性有机化合物(VOCs) /
- 源强不确定性 /
- 自由基(ROx) /
- WRF-Chem模式 /
- 城市群
Abstract: This study utilized the WRF-Chem model, with modified chemical modules. It provided a possibility to quantitative calculation the production and loss rates of hydroxyl(OH) and peroxy(HO2, RO2) radicals(ROx=OH+HO2+RO2), which few studies have been investigated in China. This facilitated the evaluation of the impacts of uncertainty in VOC emission on ROx budget. It is helpful to improve the research system of atmospheric environmental effects under the background of rapid urban agglomeration construction. Results indicated that 68% increases(decreases) in anthropogenic VOCs (AVOCs) emissions produced 4%—280% enhancements (2%—80% reductions) in the concentrations of OH, HO2, and RO2 in the Beijing-Tianjin-Hebei region, Yangtze River Delta, and Pearl River Delta of China, and resulted in 35%—48% enhancements (26%—39% reductions) in the primary ROx production in Beijing, Shanghai, and Guangzhou. For the three cities, the two largest contributors to the ROx production rate were the reaction of O1D + H2O and photolysis of HCHO, ALD2, and others; the reaction of OH + NO2 (71%—85%) was the major ROx sink. Analysis shows that 68% increases in AVOCs led to 4%—48%, 4%—52%, and 4%—44% enhancements of OH, 10%—120%, 10%—140%, and 10%—120% of HO2, 20%—280%, 20%—240%, and 10%—140% of RO2 in the three regions respectively. A 68% increases in AVOCs enhanced monthly meridional-mean daytime concentrations of OH, HO2, and RO2 by 1%—5% , 4%—16% and 6%—26% in the atmospheric boundary layer respectively. Changes in the source strength of VOCs will affect ROx budgets, led to Ln (radical termination by NOx) and Q (radical production) change, some areas alter from a VOC-sensitive regime to a NOx-sensitive regime. A significant underestimation of the source of VOCs will exaggerate the range of VOCs-sensitive areas, thereby reducing the effectiveness of O3 control strategies.-
Key words:
- volatile organic compounds(VOCs) /
- uncertainty in VOCs emissions /
- ROx /
- WRF-Chem model /
- city clusters
-
图 9 AVOCs源排放量增加68%后, WRF-Chem模式模拟2007年8月我国东部沿海区白天(06:00–18:00)(a) OH, (b) HO2, (c) RO2经向月均增幅, 以及AVOCs源排放量减少68%后白天(d) OH,(e) HO2, (f) RO2经向月均降幅
Figure 9. Monthly meridional-mean daytime enhancements of (a) OH, (b) HO2, and (c) RO2, and decreases of (d) OH, (e) HO2, and (f) RO2 as a function of latitude and altitude in August 2007 due to a 68% increase or decrease in AVOC emissions
表 1 WRF-Chem模式物理和化学过程/参数化方案
Table 1. Physical and chemical options used in the WRF-Chem model
过程类型
Option参数化/求解方案选择
Parameterization scheme微物理过程 Purdue Lin 积云对流 New Grell scheme (G3) 长波辐射 RRTM 短波辐射 Goddard 陆面过程 Noah 边界层 YSU 光解过程 Fast-J 化学过程 CBM-Z 气溶胶过程 MOZAIC 表 2 2007年8月WRF-Chem气象场模拟性能指标1)
Table 2. Performance metrics of WRF-Chem meteorology simulations in August, 2007
温度/°C
Temperature相对湿度/%
Relative humidity风速/(m·s−1)
Wind speed风向/ (°)
Wind direction文献
ReferenceRMSE MB IOA RMSE MB IOA RMSE MB IOA RMSE MB IOA 2.5 0.2 0.90 16.3 −5.5 0.78 2.5 1.6 0.56 99.3 2.6 0.65 本研究 — −0.9 0.90 — −1.3 0.78 2.1 0.9 0.65 — 2.5 — [28] — 0.5 0.88 — −1.1 0.86 1.5 0.6 0.62 — 2.6 — [29] 3.1 0.8 — 17.4 −5.7 — 2.2 1.1 — 60.9 8.2 — [30] 1)“—”表示文献未提供该数据 表 3 2007年8月WRF-Chem模拟的O3 和 NO2模拟性能指标
Table 3. Performance metrics of WRF-Chem simulations of O3 and NO2 in August, 2007
表 4 WRF-Chem模式模拟HOx与Lu等[12]观测结果对比的模拟性能指标
Table 4. Performance metrics of WRF-Chem simulations of HOx at the Guangzhou Backgarden site in July, 2006
MB ME RMSE NMB /% NME /% IOA R OH −1.90 2.30 3.00 −34.60 40.90 0.91 0.81 HO2 −3.00 3.00 4.70 −75.80 75.90 0.58 0.82 (2006年7月广州后花园观测点, MB, ME和RMSE的单位对OH是×106molecules·cm−3, 对HO2为×108molecules·cm−3) 表 5 WRF-Chem模式模拟ROx初级生成率的主要反应(单位:×10−9 h−1)
Table 5. Major reactions of ROx production of WRF-Chem simulations (×10−9 h−1)
自由基
Radical化学反应
Chemical reaction北京 上海 广州 S1 S2 S3 S1 S2 S3 S1 S2 S3 OH HONO + hv 0.27 0.31 0.22 0.40 0.50 0.35 0.29 0.35 0.27 O(1D)+H2O 0.81 0.97 0.67 0.56 0.67 0.48 0.74 0.91 0.64 OLET…+O3 0.15 0.25 0.05 0.07 0.12 0.02 0.05 0.12 0.02 HO2 HCHO + hv 0.33 0.62 0.17 0.18 0.32 0.11 0.17 0.22 0.12 ALD2…+hv 0.12 0.21 0.03 0.06 0.10 0.02 0.05 0.09 0.02 ETH…+O3 0.06 0.11 0.02 0.02 0.05 0.01 0.02 0.04 0.01 RO2 OLET…+O3 0.14 0.34 0.05 0.11 0.15 0.02 0.08 0.13 0.02 AONE…+hv 0.19 0.25 0.06 0.14 0.21 0.03 0.12 0.17 0.03 表 6 WRF-Chem模式模拟ROx净损耗率的主要反应(单位: 10−9 h−1)
Table 6. Major reactions of ROx loss rates of WRF-Chem simulations (Unit: 10−9 h−1)
自由基
Radical化学反应
Chemical reaction北京 上海 广州 S1 S2 S3 S1 S2 S3 S1 S2 S3 OH OH+NO2 1.24 1.53 0.86 0.87 1.15 0.63 0.84 1.01 0.65 OH+NO 0.05 0.07 0.02 0.05 0.07 0.03 0.02 0.03 0.01 OH+HO2 0.04 0.07 0.02 0.01 0.01 0.00 0.03 0.03 0.02 HO2 HO2+HO2 0.10 0.23 0.03 0.00 0.00 0.00 0.04 0.07 0.02 HO2+RO2 0.08 0.18 0.03 0.00 0.01 0.00 0.05 0.07 0.03 HO2+OH 0.04 0.07 0.02 0.01 0.01 0.00 0.03 0.03 0.02 RO2 RO2+HO2 0.08 0.18 0.01 0.01 0.02 0.00 0.02 0.05 0.01 RO2+NO2 0.05 0.12 0.01 0.00 0.01 0.00 0.01 0.03 0.01 RO2+NO 0.06 0.14 0.01 0.01 0.02 0.00 0.02 0.04 0.01 表 7 AVOCs源排放量增加68%后, 2007年8月京津冀、长三角、珠三角ROx白天月均浓度增幅(%)
Table 7. Daytime monthly average enhancements of ROx in BTH, YRD and PRD due to a 68% increase in AVOCs emissions in August, 2007 (%)
自由基
Radical京津冀 长三角 珠三角 OH 4—48 4—52 4—44 HO2 10—120 10—140 10—120 RO2 20—280 20—240 10—140 -
[1] 岳书敬, 孙晓玲. 城市群空间网络对污染减排效应的影响研究: 基于京津冀、长三角、珠三角三大城市群的对比 [J]. 中共南京市委党校学报, 2022(2): 85-93. doi: 10.3969/j.issn.1672-1071.2022.02.014 YUE S J, SUN X L. Research on the impact of urban agglomeration spatial network on pollution reduction effect: Based on the comparison of three major urban agglomerations in Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta [J]. Journal of Party School of Nanjing Municipal Committee of CPC, 2022(2): 85-93(in Chinese). doi: 10.3969/j.issn.1672-1071.2022.02.014
[2] WU X H, TIAN Z Q, KUAI Y, et al. Study on spatial correlation of air pollution and control effect of development plan for the city cluster in the Yangtze River Delta [J]. Socio-Economic Planning Sciences, 2022, 83: 101213. doi: 10.1016/j.seps.2021.101213 [3] WANG W, WANG H B, ORTIZ J, et al. The role of economic development on the effectiveness of industrial pollution reduction policy in Chinese Cities [J]. Journal of Cleaner Production, 2022, 339: 130709. doi: 10.1016/j.jclepro.2022.130709 [4] 孙金金, 黄琳, 龚康佳, 等. 2014—2019年北京和南京地区PM2.5和臭氧质量浓度相关性研究 [J]. 南京信息工程大学学报(自然科学版), 2020, 12(6): 656-664. SUN J J, HUANG L, GONG K J, et al. Correlation between surface PM2.5 and ozone during 2014-2019 in Beijing and Nanjing [J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(6): 656-664(in Chinese).
[5] ZHENG B, TONG D, LI M, et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions [J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111. doi: 10.5194/acp-18-14095-2018 [6] 王峰, 汪健伟, 杨宁, 等. VOCs源强不确定性对臭氧生成及污染防治影响的模拟分析 [J]. 环境科学, 2021, 42(12): 5713-5722. doi: 10.13227/j.hjkx.202103188 WANG F, WANG J W, YANG N, et al. WRF-chem simulations of the impacts of uncertainty in VOCs emissions on ozone formation and control strategies [J]. Environmental Science, 2021, 42(12): 5713-5722(in Chinese). doi: 10.13227/j.hjkx.202103188
[7] 王峰. VOCs源强的不确定性及其改进对自由基收支和臭氧生成率的影响[D]. 北京: 中国科学院大学, 2014. WANG F. The uncertainty of VOCs source intensity and its improvement influence on free radical budget and ozone generation rate[D]. Beijing: University of Chinese Academy of Sciences, 2014(in Chinese).
[8] 邵敏, 任信荣, 王会祥, 等. 城市大气中OH和HO2自由基生成和消除的定量关系 [J]. 科学通报, 2004, 49(17): 1716-1721. doi: 10.3321/j.issn:0023-074X.2004.17.005 SHAO M, REN X R, WANG H X, et al. The quantitative relationship between the generation and elimination of OH and HO2 free radicals in the atmosphere of cities [J]. Chinese Science Bulletin, 2004, 49(17): 1716-1721(in Chinese). doi: 10.3321/j.issn:0023-074X.2004.17.005
[9] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006. TANG X Y, ZHANG Y H, SHAO M. Atmospheric chemistry[M]. Beijing: Higher Education Press, 2006(in Chinese).
[10] 安俊岭, 李颖, 汤宇佳, 等. HONO来源及其对空气质量影响研究进展 [J]. 中国环境科学, 2014, 34(2): 273-281. AN J L, LI Y, TANG Y J, et al. Advances in HONO sources, HONO simulations, and the impacts of the HONO sources on regional or global air quality [J]. China Environmental Science, 2014, 34(2): 273-281(in Chinese).
[11] MA J Z, WANG W, CHEN Y, et al. The IPAC-NC field campaign: A pollution and oxidization pool in the lower atmosphere over Huabei, China [J]. Atmospheric Chemistry and Physics, 2012, 12(9): 3883-3908. doi: 10.5194/acp-12-3883-2012 [12] LU K D, ROHRER F, HOLLAND F, et al. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: A missing OH source in a VOC rich atmosphere [J]. Atmospheric Chemistry and Physics, 2012, 12(3): 1541-1569. doi: 10.5194/acp-12-1541-2012 [13] THORNTON J A. Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume [J]. Journal of Geophysical Research, 2002, 107(D12): 4146. doi: 10.1029/2001JD000932 [14] LI J R, SAKAMOTO Y, KOHNO N, et al. Total hydroxyl radical reactivity measurements in a suburban area during AQUAS-Tsukuba campaign in summer 2017 [J]. Science of the Total Environment, 2020, 740: 139897. doi: 10.1016/j.scitotenv.2020.139897 [15] SAKAMOTO Y, KOHNO N, RAMASAMY S, et al. Investigation of OH-reactivity budget in the isoprene, α-pinene and m-xylene oxidation with OH under high NOx conditions [J]. Atmospheric Environment, 2022, 271: 118916. doi: 10.1016/j.atmosenv.2021.118916 [16] DIENHART D, CROWLEY J N, BOURTSOUKIDIS E, et al. Measurement report: Observation-based formaldehyde production rates and their relation to OH reactivity around the Arabian Peninsula [J]. Atmospheric Chemistry and Physics, 2021, 21(23): 17373-17388. doi: 10.5194/acp-21-17373-2021 [17] LU K D, ZHANG Y H, SU H, et al. Oxidant (O3+NO2) production processes and formation regimes in Beijing (vol 115, D07303, 2010) [J]. Journal of Geophysical Research Atmospheres, 2010, 115: D07303. [18] LIU Z, WANG Y, GU D, et al. Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation [J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7737-7752. doi: 10.5194/acp-12-7737-2012 [19] ZHANG Q, STREETS D G, CARMICHAEL G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5131-5153. doi: 10.5194/acp-9-5131-2009 [20] LI Y, AN J L, MIN M, et al. Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China [J]. Atmospheric Environment, 2011, 45(27): 4735-4744. doi: 10.1016/j.atmosenv.2011.04.086 [21] WIEDINMYER C, AKAGI S K, YOKELSON R J, et al. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning [J]. Geoscientific Model Development, 2011, 4(3): 625-641. doi: 10.5194/gmd-4-625-2011 [22] GUENTHER A, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) [J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3181-3210. doi: 10.5194/acp-6-3181-2006 [23] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled “online” chemistry within the WRF model [J]. Atmospheric Environment, 2005, 39(37): 6957-6975. doi: 10.1016/j.atmosenv.2005.04.027 [24] ZAVERI R A, PETERS L K. A new lumped structure photochemical mechanism for large-scale applications [J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D23): 30387-30415. doi: 10.1029/1999JD900876 [25] 王峰, 汪健伟, 翟菁, 等. 卫星观测资料改进活性VOCs源排放及其对臭氧模拟影响 [J]. 中国环境科学, 2021, 41(6): 2504-2514. doi: 10.3969/j.issn.1000-6923.2021.06.003 WANG F, WANG J W, ZHAI J, et al. Emission improvements of reactive VOCs based on satellite observations and their impact on ozone simulations [J]. China Environmental Science, 2021, 41(6): 2504-2514(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.06.003
[26] FAST J D, GUSTAFSON W I Jr, EASTER R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model [J]. Journal of Geophysical Research, 2006, 111(D21): D21305. doi: 10.1029/2005JD006721 [27] EMMONS L K, WALTERS S, HESS P G, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) [J]. Geoscientific Model Development, 2010, 3(1): 43-67. doi: 10.5194/gmd-3-43-2010 [28] X W, Y Z, HU Y T, et al. Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system [J]. Atmospheric Chemistry and Physics, 2010, 10(9): 4423-4437. doi: 10.5194/acp-10-4423-2010 [29] LI L, CHEN C H, HUANG C, et al. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system [J]. Atmospheric Chemistry and Physics, 2012, 12(22): 10971-10987. doi: 10.5194/acp-12-10971-2012 [30] ZHANG H L, LI J Y, YING Q, et al. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model [J]. Atmospheric Environment, 2012, 62: 228-242. doi: 10.1016/j.atmosenv.2012.08.014 [31] WANG F, AN J L, LI Y, et al. Impacts of uncertainty in AVOC emissions on the summer ROx budget and ozone production rate in the three most rapidly-developing economic growth regions of China [J]. Advances in Atmospheric Sciences, 2014, 31(6): 1331-1342. doi: 10.1007/s00376-014-3251-z [32] TANG Y, AN J, WANG F, et al. Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China [J]. Atmospheric Chemistry and Physics, 2015, 15(16): 9381-9398. doi: 10.5194/acp-15-9381-2015 [33] KLEINMAN L I, DAUM P H, LEE J H, et al. Dependence of ozone production on NO and hydrocarbons in the troposphere [J]. Geophysical Research Letters, 1997, 24(18): 2299-2302. doi: 10.1029/97GL02279 [34] SONG S K, KIM Y K, SHON Z H, et al. Photochemical analyses of ozone and related compounds under various environmental conditions [J]. Atmospheric Environment, 2012, 47: 446-458. doi: 10.1016/j.atmosenv.2011.10.026 [35] SHAO M, LU S H, LIU Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation [J]. Journal of Geophysical Research Atmospheres, 2009, 114(7): D00G06.