-
我国城市生活垃圾总量巨大,且人均生活垃圾产量仍以年6%以上的增幅高涨[1]. 渗滤液是垃圾在处理过程中产生的副产物,具有水质复杂、有机污染物浓度高、无机离子存在量大等特点[2]. 垃圾渗滤液中的无机离子主要以高浓度的氯离子(Cl−)以及多种重金属离子存在,其中,Cl−浓度可高达几万mg·L−1;有机污染物主要包括腐殖酸和富里酸等组分[3]. 如果不对垃圾渗滤液中的氯离子和有机污染物进行安全处理,势必会对周围环境和人类健康造成极大的危害.
现阶段废水除氯方法主要有化学沉淀法、膜分离法、蒸发浓缩法、电解法和离子交换法等[4-6],但普遍存在除氯成本高、不能满足实际生产需求等问题. 化学沉淀法是利用化学沉淀剂与渗滤液中的Cl−反应,生成不溶于水的沉淀,再经过固液分离,达到去除Cl−的目的. 化学沉淀法包括超高石灰铝法、亚铜除氯法、Bi2O3除氯法等[7-10],其中,超高石灰铝法中药剂投加量大且会产生许多低附加值除氯产物;亚铜除氯法中亚铜离子不稳定,导致废水中铜离子残留量高;Bi2O3除氯法具有除氯效率高、除氯时间短等特点. 研究发现,封志敏等[11]在Bi2O3与Cl−的物质的量比为1.5∶2、温度为50 ℃、pH值为2和反应时间为2 h的条件下,处理硫酸锌溶液中Cl−的浓度可从2000 mg·L−1降低至280 mg·L−1. Huang等[12]采用含有Bi2O3量子点的铋系除氯剂处理渗滤液,得出在Bi3+和Cl−的物质的量比为1∶1、pH=1、Cl−浓度不低于2500 mg·L−1和搅拌时间为4 h的条件下,除氯效率最佳. 但由于渗滤液水质复杂,Bi2O3除氯法仍然需要较大的药剂投加量,且除氯产物BiOCl再生过程中碱消耗量大,也存在铋的损失[13]. 为解决Bi2O3除氯法遇到的这些难题并消除渗滤液高浓度氯离子和有机污染物的潜在威胁,本文提出利用稀土强化Bi2O3除氯效果,并将除氯产物制备成高附加值的上转换荧光材料,以实现废弃物高效资源化利用.
目前,BiOCl已作为一种新型的稀土掺杂材料而备受关注,因为通过稀土离子掺杂可获得优异的上转换发光性能[14-17]. 宋志国等[18]发明了一种稀土离子掺杂BiOCl的方法,其中,Bi3+、Ho3+、Yb3+、Nd3+按照一定物质的量比进行掺杂,经热处理后制备出发光颜色可调的BiOCl半导体材料,并证实稀土离子掺杂浓度能够影响上转换发光强度. 陈凡丽等[19]采用固相法制备了稀土离子掺杂BiOCl层状半导体,发现Zn2+可诱导Eu3+反常发光,使发光强度出现先减弱后增强的现象. 而垃圾渗滤液中含有一定量的重金属离子,在除氯过程中,它们易混入除氯产物中,可能对改善发光性能具有一定的促进作用. Li等[20]利用稀土离子掺杂铋酸盐微晶玻璃对渗滤液氯离子进行去除,发现部分Er3+和Yb3+离子可转移掺杂进BiOCl,使整个玻璃体系保持了优异的上转换发光强度,并且对抗生素诺氟沙星的光催化降解效率达到98%. 然而,关于稀土离子掺杂除氯产物制备上转换发光材料的研究还鲜有报道. Bi2O3处理渗滤液的产物中包含有未完全反应的Bi2O3、除氯产物BiOCl以及吸附的有机污染物,而引入的稀土氧化物Yb2O3和Er2O3可能有利于增强有机物和Cl-去除效果. 后期高温煅烧下,可使吸附的有机物裂解碳化,利用碳的还原性将Bi2O3中的部分Bi3+转化为单质Bi,并促进Yb3+和Er3+对BiOCl的掺杂,获得上转换荧光增强材料. 另外,吴飞飞等[21]研究了BiOCl的热解行为,发现BiOCl在高温下会形成不同晶相的BixOyClz. 这类BixOyClz通过高温煅烧或固态取代等方法脱除[Bi2O2]2+,被各种形式的O取代而形成,统称为“富氧BiOCl” [22-23]. 富氧BiOCl具有更明显的层状结构,可能较传统BiOCl更具有优势. 因此,利用Bi2O3不仅能初步去除渗滤液中高浓度的Cl-和有机污染物,还能利用Cl-和吸附的腐殖酸有效制备上转换荧光材料,为高浓度含氯有机废水的资源化处理提供新的借鉴.
本文采用化学共沉淀与高温煅烧相结合的方法制备Er3+/Yb3+共掺杂富氧BiOCl荧光材料,即采用Bi2O3、Yb2O3和Er2O3的混合物对渗滤液中的Cl-和有机污染物进行沉淀和吸附,得到上转换荧光材料前驱体,之后进行煅烧处理. 研究了Er3+/Yb3+共掺杂富氧BiOCl (EY-BOC)上转换荧光材料的结构、形貌和发光性能的变化,探讨了温度和不同基质载体对发光强度的影响,揭示了利用渗滤液中的污染物制备上转换荧光增强材料的机理.
铋法去除垃圾渗滤液氯离子及其产物高值化利用机制
Removal of chloride ions in landfill leachate by bismuth method and the high-value utilization mechanism of its chloride removal product
-
摘要: 高浓度含氯有机废水在处理过程中不仅会消耗过多的化学药剂,还会产生大量的废弃产物. 为实现废弃物氯离子和有机污染物的去除和高值利用,本文以垃圾渗滤液为研究对象,采用化学共沉淀与高温煅烧的方法制备了Er3+和Yb3+掺杂型上转换荧光粉. 实验结果表明,当Bi2O3除氯剂和稀土投加量达到Bi3+∶Cl−∶Yb3+∶Er3+物质的量比为1∶1∶0.2∶0.02时,渗滤液Cl−、COD和TOC的去除效率分别为52.7%、45.7%和36.6%. 除氯产物在温度为600 ℃煅烧后,所得样品在980 nm激光激发下的上转换发光强度最高,发光光谱包括强烈的绿光和红光,绿光区域在523—553 nm和红光区域在655—670 nm. 上转换荧光增强机制分析表明,相对于Bi2O3和BiOCl,基质材料Bi3O4Cl和Bi12O17Cl2为Er3+和Yb3+离子提供了更好的掺杂环境. 因此,虽然除氯产物中还剩余Bi2O3,但其可与BiOCl在高温煅烧下形成Bi3O4Cl和Bi12O17Cl2,为上转换发光强度的提高和光谱调节提供了便利,也为渗滤液中氯离子和有机污染物的去除和高值资源化利用提供了新的方法.Abstract: The treatment of highly concentrated chloride-containing organic wastewater not only consumes too many chemicals, but also produces a large number of wastes. To realize the removal and high-value utilization of the chloride (Cl-) ions and organic pollutants in wastes, in this work, the landfill leachate was used as the research object, and the Er3+/Yb3+ doped upconversion phosphors were prepared by a chemical co-precipitation and high temperature calcination method. The experimental results showed that, when the added dosages of Bi2O3 and lanthanides reached the Bi3+∶Cl−∶ Yb3+∶Er3+ molar ratio of 1∶1∶ 0.2∶0.02, the removal efficiencies of Cl−, chemical oxygen demand (COD) and total organic carbon (TOC) in leachate were 52.7%, 45.7% and 36.6%, respectively. When the terminal chloride removal precipitate was calcinated at the temperature of 600 ℃, the upconversion luminescence intensity of the obtained sample is the highest under 980 nm laser excitation. The luminescence spectrum contained strong green and red light, wherein the green light region was at 523—553 nm and the red light region was at 655—670 nm. The analysis of the enhancement mechanism of upconversion luminescence showed that the matrix agents of Bi3O4Cl and Bi12O17Cl2 provided better doping environments for Er3+ and Yb3+ ions than those of Bi2O3 and BiOCl. Therefore, although Bi2O3 remains in the terminal chloride removal precipitate, it is able to react with BiOCl to form Bi3O4Cl and Bi12O17Cl2 under the high temperature calcination process, which not only facilitates the improvement of upconversion luminescence and spectral adjustment, but also provides a new method for the removal and high-value resource utilization of Cl− ions and organic pollutants in leachate.
-
Key words:
- landfill leachate /
- Bi2O3 /
- chloride ions /
- humic acid /
- upconversion phosphor.
-
图 1 (a) 渗滤液Cl−去除效率; (b) 渗滤液Cl−去除前后COD和TOC变化; (c) 渗滤液Cl−去除前的三维荧光图;(d) 渗滤液Cl−去除后的三维荧光图; (e) 渗滤液Cl−去除前后的光学照片; (f) 初始Bi2O3及其除氯产物的光学照片
Figure 1. (a) Cl− removal efficiency of leachate; (b) COD and TOC changes of leachate before and after Cl− removal; (c) Three-dimensional fluorescence spectrum of leachate before Cl− removal; (d) Three-dimensional fluorescence spectrum of leachate after Cl− removal; (e) Optical images of leachate before and after Cl− removal; (f) Optical images of initial Bi2O3 and its terminal chloride removal precipitate
图 2 (a) 除氯产物不同温度煅烧后在自然光和980 nm激光激发下的光照照片; (b) 除氯产物不同温度煅烧后在980 nm激光激发下的上转换发射光谱图
Figure 2. (a) Optical images of the chloride removal precipitates calcined at different temperatures under natural light and 980 nm laser excitation; (b) Upconversion emission spectra of the chloride removal precipitates calcined at different temperatures under 980 nm laser excitation
图 4 (a,b) 原始Bi2O3的SEM形貌; (c) 除氯产物的SEM形貌; 除氯产物经不同温度煅烧后的SEM形貌:(d) 300 ℃, (e) 400 ℃, (f) 500 ℃, (g) 600 ℃, (h) 800 ℃
Figure 4. (a,b) SEM image of pristine Bi2O3; (c) SEM image of the chloride removal precipitate; SEM images of the chloride removal precipitates after calcination at different temperatures: (d) 300 ℃, (e) 400 ℃, (f) 500 ℃, (g) 600 ℃, (h) 800 ℃
-
[1] 王辉. 城市生活垃圾处理设施落地现状与对策研究 [J]. 化工设计通讯, 2022, 48(2): 196-198,210. doi: 10.3969/j.issn.1003-6490.2022.02.067 WANG H. Study on the current situation and countermeasures of urban domestic waste treatment facilities [J]. Chemical Engineering Design Communications, 2022, 48(2): 196-198,210(in Chinese). doi: 10.3969/j.issn.1003-6490.2022.02.067
[2] TENG C Y, ZHOU K G, PENG C H, et al. Characterization and treatment of landfill leachate: A review [J]. Water Research, 2021, 203: 117525. doi: 10.1016/j.watres.2021.117525 [3] WIJEKOON P, KOLIYABANDARA P A, COORAY A T, et al. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges [J]. Journal of Hazardous Materials, 2022, 421: 126627. doi: 10.1016/j.jhazmat.2021.126627 [4] LI Y M, YANG Z Z, YANG K H, et al. Removal of chloride from water and wastewater: Removal mechanisms and recent trends [J]. Science of the Total Environment, 2022, 821: 153174. doi: 10.1016/j.scitotenv.2022.153174 [5] CAO K F, CHEN Z, WU Y H, et al. The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies [J]. Water Research, 2022, 215: 118271. doi: 10.1016/j.watres.2022.118271 [6] 张阳, 史丙丁, 马保中, 等. 酸性溶液除氯技术研究现状及进展 [J]. 有色金属科学与工程, 2021, 12(5): 10-17. ZHANG Y, SHI B D, MA B Z, et al. Research status and progress of chlorine removal technology in acid solution [J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 10-17(in Chinese).
[7] SUN D Q, ZHOU Z, MING Q, et al. Improving settleability and dewaterability of Friedel's salt for chloride removal from saline wastewater [J]. Desalination, 2021, 509: 115070. doi: 10.1016/j.desal.2021.115070 [8] ZHANG L J, LV P, HE Y, et al. Ultrasound-assisted cleaning chloride from wastewater using Friedel's salt precipitation [J]. Journal of Hazardous Materials, 2021, 403: 123545. doi: 10.1016/j.jhazmat.2020.123545 [9] PENG X J, DOU W Y, KONG L H, et al. Removal of chloride ions from strongly acidic wastewater using Cu(0)/Cu(Ⅱ): Efficiency enhancement by UV irradiation and the mechanism for chloride ions removal [J]. Environmental Science & Technology, 2019, 53(1): 383-389. [10] DOU W Y, HU X Y, KONG L H, et al. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: Efficiency enhancement and mechanisms [J]. Environmental Science & Technology, 2019, 53(17): 10371-10378. [11] 封志敏, 宁顺明, 王文娟, 等. 氧化铋法从硫酸锌溶液中除氯的研究 [J]. 矿冶工程, 2015, 35(4): 63-66. doi: 10.3969/j.issn.0253-6099.2015.04.017 FENG Z M, NING S M, WANG W J, et al. Dechlorination of zinc sulfate solution by bismuth oxide [J]. Mining and Metallurgical Engineering, 2015, 35(4): 63-66(in Chinese). doi: 10.3969/j.issn.0253-6099.2015.04.017
[12] HUANG S Q, LI L, ZHU N W, et al. Removal and recovery of chloride ions in concentrated leachate by Bi(Ⅲ) containing oxides quantum dots/two-dimensional flakes [J]. Journal of Hazardous Materials, 2020, 382: 121041. doi: 10.1016/j.jhazmat.2019.121041 [13] WU Y, CHEN Y W, HUANG S Q, et al. Comparison of bismuth ferrites for chloride removal: Removal efficiency, stability, and structure [J]. Applied Surface Science, 2022, 576: 151804. doi: 10.1016/j.apsusc.2021.151804 [14] FAN Y Z, WANG T H, ZHANG Y Y, et al. Enhancing the near-infrared photocatalytic activity and upconversion luminescence of BiOCl: Yb3+–Er3+ nanosheets with polypyrrole in situ modification [J]. Journal of Materials Chemistry C, 2021, 9(42): 15251-15262. doi: 10.1039/D1TC03451K [15] PENG Y H, PENG J C, HAN J J, et al. Intense single-band red upconversion emission in BiOCl: Er3+ layered semiconductor via co-doping Ho3+ [J]. Journal of Rare Earths, 2020, 38(6): 577-583. doi: 10.1016/j.jre.2019.11.008 [16] WU W W, CHEN D Q, ZHOU Y, et al. Near-single-band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets [J]. Journal of Alloys and Compounds, 2016, 682: 275-283. doi: 10.1016/j.jallcom.2016.04.305 [17] LI Y J, SONG Z G, LI C, et al. Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl: Er3+/Yb3+ synthesized at low temperature [J]. Ceramics International, 2013, 39(8): 8911-8916. doi: 10.1016/j.ceramint.2013.04.085 [18] 宋志国, 王莎莎, 刘桐, 等. 一种稀土离子掺杂氯氧化铋半导体材料及其制备方法: CN109943336B[P]. 2021-09-28. SONG Z G, WANG S S, LIU T, et al. Rare earth ion-doped bismuth oxychloride semiconductor material and preparation method thereof: CN109943336B[P]. 2021-09-28(in Chinese).
[19] 陈凡丽, 李永进, 张相周, 等. Zn2+掺杂诱导Eu3+激活BiOCl层状半导体的反常发光性能研究 [J]. 无机材料学报, 2017, 32(8): 877-883. doi: 10.15541/jim20160597 CHEN F L, LI Y J, ZHANG X Z, et al. Anomalous emission performance of Eu3+-activated BiOCl layered phosphors induced by doping Zn2+ [J]. Journal of Inorganic Materials, 2017, 32(8): 877-883(in Chinese). doi: 10.15541/jim20160597
[20] LI G B, HUANG S Q, ZHU N W, et al. Defect-rich heterojunction photocatalyst originated from the removal of chloride ions and its degradation mechanism of norfloxacin [J]. Chemical Engineering Journal, 2021, 421: 127852. doi: 10.1016/j.cej.2020.127852 [21] 吴飞飞, 马春阳, 焦金龙, 等. 纳米薄片状氯氧化铋的制备及其热解行为 [J]. 硅酸盐学报, 2016, 44(7): 948-952. WU F F, MA C Y, JIAO J L, et al. Preparation and thermal decomposition of nanoflakes bismuth oxychloride crystals [J]. Journal of the Chinese Ceramic Society, 2016, 44(7): 948-952(in Chinese).
[22] LI J, YU Y, ZHANG L Z. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis [J]. Nanoscale, 2014, 6(15): 8473-8488. doi: 10.1039/C4NR02553A [23] LI H, LI J, AI Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives [J]. Angewandte Chemie International Edition, 2018, 57(1): 122-138. doi: 10.1002/anie.201705628 [24] 张双, 周集体. 高盐有机化工废水中COD与TOC的相关性 [J]. 化工环保, 2018, 38(1): 122-126. doi: 10.3969/j.issn.1006-1878.2018.01.022 ZHANG S, ZHOU J T. Correlation between COD and TOC in high-salinity organic chemical industrial wastewater [J]. Environmental Protection of Chemical Industry, 2018, 38(1): 122-126(in Chinese). doi: 10.3969/j.issn.1006-1878.2018.01.022
[25] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [26] 邓阳, 冯传平, 胡伟武, 等. 电化学氧化垃圾渗滤液生化出水过程中溶解性有机物形态及可生化性 [J]. 环境化学, 2018, 37(7): 1647-1659. doi: 10.7524/j.issn.0254-6108.2017100902 DENG Y, FENG C P, HU W W, et al. DOM composition and biodegradability of biologically treated landfill leachate during electrochemical oxidation degradation [J]. Environmental Chemistry, 2018, 37(7): 1647-1659(in Chinese). doi: 10.7524/j.issn.0254-6108.2017100902
[27] 张正义, 张千, 楼紫阳, 等. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析 [J]. 化工学报, 2021, 72(10): 5362-5371. doi: 10.11949/0438-1157.20210400 ZHANG Z Y, ZHANG Q, LOU Z Y, et al. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation [J]. CIESC Journal, 2021, 72(10): 5362-5371(in Chinese). doi: 10.11949/0438-1157.20210400
[28] WEI S Q, SHANG X Y, HUANG P, et al. Polarized upconversion luminescence from a single LiLuF4: Yb3+/Er3+ microcrystal for orientation tracking [J]. Science China (Materials), 2022, 65(1): 220-228. doi: 10.1007/s40843-021-1713-x [29] ZHOU X, WANG H, XIA H P, et al. Efficient up-conversion Yb3+, Er3+ co-doped Na5Lu9F32 single crystal for photovoltaic application under solar cell spectrum excitation [J]. Chinese Optics Letters, 2019, 17(9): 72-76. [30] WANG M J, HUANG S Q, LV Y Y, et al. Fabrication of monodispersed plasmonic photocatalysts on activated carbon with the carbon source and reduction property of sewage sludge [J]. Applied Surface Science, 2021, 538: 148036. doi: 10.1016/j.apsusc.2020.148036 [31] 吴岳, 黄寿强, 刘维桥. 废水除氯产物氯氧化铋的干法再生研究 [J]. 江苏理工学院学报, 2021, 27(2): 72-80. doi: 10.3969/j.issn.1674-8522.2021.02.011 WU Y, HUANG S Q, LIU W Q. Study on dry regeneration of bismuth oxychloride obtained from the removal of chloride ions contained in wastewater [J]. Journal of Jiangsu University of Technology, 2021, 27(2): 72-80(in Chinese). doi: 10.3969/j.issn.1674-8522.2021.02.011
[32] XU Y X, JIN X L, GE T, et al. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4 [J]. Chemical Engineering Journal, 2021, 409: 128178. doi: 10.1016/j.cej.2020.128178 [33] XU B R, GAO Y Q, LI Y D, et al. Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: The effect of defect states on photocatalytic performance [J]. Applied Surface Science, 2020, 507: 144806. doi: 10.1016/j.apsusc.2019.144806 [34] FAN C, ZHANG Y H, HUANG S Q, et al. Effect of introducing zinc on the photoluminescence and stability of cesium lead halide perovskite materials [J]. Applied Surface Science, 2022, 584: 152527. doi: 10.1016/j.apsusc.2022.152527 [35] KAHRAMAN A, KARACALI H, YILMAZ E. Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics [J]. Journal of Alloys and Compounds, 2020, 825: 154171. doi: 10.1016/j.jallcom.2020.154171 [36] 李永进, 黄杨彬, 刘群, 等. 近紫外激发具有颜色可调的Er3+/Eu3+共掺BiOCl荧光粉 [J]. 物理学报, 2015, 64(17): 357-362. LI Y J, HUANG Y B, LIU Q, et al. Color-tunableness of Er3+/Eu3+ co-doped BiOCl phosphors for near ultraviolet excitation [J]. Acta Physica Sinica, 2015, 64(17): 357-362(in Chinese).