嘧菌酯对典型农田周边水生生态风险评估

郑豪杰, 孙健, 张鲲, 程涵智, 刘沁雨, 曹玲, 尹晓辉. 嘧菌酯对典型农田周边水生生态风险评估[J]. 生态毒理学报, 2022, 17(4): 230-242. doi: 10.7524/AJE.1673-5897.20211013002
引用本文: 郑豪杰, 孙健, 张鲲, 程涵智, 刘沁雨, 曹玲, 尹晓辉. 嘧菌酯对典型农田周边水生生态风险评估[J]. 生态毒理学报, 2022, 17(4): 230-242. doi: 10.7524/AJE.1673-5897.20211013002
Zheng Haojie, Sun Jian, Zhang Kun, Cheng Hanzhi, Liu Qinyu, Cao Ling, Yin Xiaohui. Risk Assessment of Azoxystrobin to Aquatic Ecological Systems around Farmland in China[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 230-242. doi: 10.7524/AJE.1673-5897.20211013002
Citation: Zheng Haojie, Sun Jian, Zhang Kun, Cheng Hanzhi, Liu Qinyu, Cao Ling, Yin Xiaohui. Risk Assessment of Azoxystrobin to Aquatic Ecological Systems around Farmland in China[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 230-242. doi: 10.7524/AJE.1673-5897.20211013002

嘧菌酯对典型农田周边水生生态风险评估

    作者简介: 郑豪杰(1997—),男,硕士研究生,研究方向为农药生态毒理,E-mail:2228961324@qq.com
    通讯作者: 尹晓辉, E-mail: yinxh@zafu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(21007060);浙江省自然科学基金资助项目(LY14B070014)

  • 中图分类号: X171.5

Risk Assessment of Azoxystrobin to Aquatic Ecological Systems around Farmland in China

    Corresponding author: Yin Xiaohui, yinxh@zafu.edu.cn
  • Fund Project:
  • 摘要: 本文评价了嘧菌酯的生物富集风险,并利用Top-Rice和China-Psem模型,针对目前中国在水稻、小麦、柑橘和马铃薯4种主要作物上登记的所有嘧菌酯单剂产品进行水生态风险评估。结果显示,我国国内在这4种作物上所登记的嘧菌酯单剂共计6种剂型,80种(截至2021年5月),其中悬浮剂占比最大,为73.75%,其次为水分散粒剂,占18.75%,可湿性粉剂、超低容量液剂、悬浮种衣剂和颗粒剂分别占3.75%、1.25%、1.25%和1.25%。根据不同剂型嘧菌酯产品的施用方法,对其在4种作物上使用进行暴露分析,结果显示,不同剂型嘧菌酯在水稻、小麦、柑橘和马铃薯上施用后,其预测环境浓度(predicted environmental concentration,PEC)范围分别为12.03~300.04、0.03~31.33、4.40~50.51和0.44~27.07 μg·L-1。风险表征结果显示,嘧菌酯在4种作物上使用后,针对不同分组,风险商值(risk quotient,RQ)>1的分组分别占总模拟组的82.81%、20.24%、55.56%和28.47%,但嘧菌酯生物富集风险可接受。总之,目前在中国4种作物上登记使用的嘧菌酯产品对水生生态系统风险不可忽视,但因本研究针对其施药方法模式的分析偏保守,使得评价结果具有一定保守性。
  • 加载中
  • Balba H. Review of strobilurin fungicide chemicals[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42(4):441-451
    王丽, 石延霞, 李宝聚, 等. 甲氧基丙烯酸酯类杀菌剂研究进展[J]. 农药科学与管理, 2008, 29(9):24-27

    Wang L, Shi Y X, Li B J, et al. The progresses of research on strobilurin fungicides[J]. Pesticide Science and Administration, 2008, 29(9):24-27(in Chinese)

    张国生. 甲氧基丙烯酸酯类杀菌剂的应用、开发现状及展望[J]. 农药科学与管理, 2003, 24(12):30-34

    Zhang G S. Current status of application, development and prospect of strobin fungicides[J]. Pesticide Science and Administration, 2003, 24(12):30-34(in Chinese)

    Phillips McDougalli-Agriservice. Products section-2015 market[R]. Phillips McDougall-AgriService, 2016
    严明, 柏亚罗. 甲氧基丙烯酸酯类等四大类杀菌剂市场概况及前景展望[J]. 现代农药, 2016, 15(6):1-8

    , 11 Yan M, Bai Y L. Market overview and prospect outlook on four fungicide sectors including methoxyacrylates[J]. Modern Agrochemicals, 2016, 15(6):1-8, 11(in Chinese)

    华乃震. 农药水分散粒剂的开发和进展[J]. 现代农药, 2006, 5(2):32-37

    Hua N Z. Development and advance of pesticides water dispersible granule formulations[J]. Modern Agrochemicals, 2006, 5(2):32-37(in Chinese)

    陈飞. 几种聚羧酸盐分散剂在25%嘧菌酯悬浮剂中的应用[J]. 安徽化工, 2014, 40(4):72-74

    Chen F. Application of polycarboxylate dispersant in 25% azoxystrobin SC[J]. Anhui Chemical Industry, 2014, 40(4):72-74(in Chinese)

    Rabiet M, Margoum C, Gouy V, et al. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment-Effect of sampling frequency[J]. Environmental Pollution, 2010, 158(3):737-748
    Filho A M, dos Santos F N, Pereira P A D P. Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical groups in surface and groundwater samples[J]. Microchemical Journal, 2010, 96(1):139-145
    Jørgensen L F, Kjær J, Olsen P, et al. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites[J]. Chemosphere, 2012, 88(5):554-562
    Chau H T C, Kadokami K, Duong H T, et al. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam[J]. Environmental Science and Pollution Research International, 2018, 25(8):7147-7156
    Liess M, Von Der Ohe P C. Analyzing effects of pesticides on invertebrate communities in streams[J]. Environmental Toxicology and Chemistry, 2005, 24(4):954-965
    Wightwick A M, Bui A D, Zhang P, et al. Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia[J]. Archives of Environmental Contamination and Toxicology, 2012, 62(3):380-390
    Mimbs W H 4th, Cusaac J P W, Smith L M, et al. Occurrence of current-use fungicides and bifenthrin in rainwater basin wetlands[J]. Chemosphere, 2016, 159:275-281
    Smalling K L, Kuivila K M, Orlando J L, et al. Environmental fate of fungicides and other current-use pesticides in a central California estuary[J]. Marine Pollution Bulletin, 2013, 73(1):144-153
    李慧, 曹芳杰, 邱立红. 甲氧基丙烯酸酯类杀菌剂对水生生物的生态毒理学研究进展[J]. 农药学学报, 2019, 21(S1):831-840

    Li H, Cao F J, Qiu L H. Research progress of the ecotoxicology of strobilurins on aquatic organisms[J]. Chinese Journal of Pesticide Science, 2019, 21(S1):831-840(in Chinese)

    Bartlett D W, Clough J M, Godwin J R, et al. The strobilurin fungicides[J]. Pest Management Science, 2002, 58(7):649-662
    Zafar M I, Belgers J D, van Wijngaarden R P, et al. Ecological impacts of time-variable exposure regimes to the fungicide azoxystrobin on freshwater communities in outdoor microcosms[J]. Ecotoxicology, 2012, 21(4):1024-1038
    Du B B, Zhang Z Y, Liu W Y, et al. Acute toxicity of the fungicide azoxystrobin on the diatom Phaeodactylum tricornutum[J]. Ecotoxicology and Environmental Safety, 2019, 168:72-79
    Garanzini D S, Menone M L. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(2):146-151
    Bony S, Gillet C, Bouchez A, et al. Genotoxic pressure of vineyard pesticides in fish:Field and mesocosm surveys[J]. Aquatic Toxicology, 2008, 89(3):197-203
    Han Y N, Zhu L S, Wang J H, et al. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin[J]. Ecotoxicology and Environmental Safety, 2014, 107:214-219
    杨淞霖, 尹晶, 王会利, 等. 3种农药对大型溞的急性毒性比较[J]. 生态毒理学报, 2017, 12(2):238-242

    Yang S L, Yin J, Wang H L, et al. The toxicity of three pesticides of mefenoxam, fludioxonil, azoxystrobin and their compounds to Daphnia magna Straus[J]. Asian Journal of Ecotoxicology, 2017, 12(2):238-242(in Chinese)

    贾伟. 4种甲氧基丙烯酸酯类杀菌剂对赤眼蜂和斑马鱼的影响[D]. 北京:中国农业科学院, 2016:92 Jia W. Influence of four kinds of strobilurin fungicides on zebrafish and Trichogramma[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016:92(in Chinese)
    穆希岩, 黄瑛, 罗建波, 等. 通过多阶段暴露试验评价嘧菌酯对斑马鱼的急性毒性与发育毒性[J]. 环境科学学报, 2017, 37(3):1122-1132

    Mu X Y, Huang Y, Luo J B, et al. Evaluation of acute and developmental toxicity of azoxystrobin on zebrafish via multiple life stage assays[J]. Acta Scientiae Circumstantiae, 2017, 37(3):1122-1132(in Chinese)

    中国农业农村部农药检定所. 农药快讯信息网[EB/OL]. (2021-06-01)[2021-10-13]. http://www.agroinfo.com.cn/news_detail_9563.html
    中华人民共和国农业部. 农药登记环境风险评估指南第2部分:水生生态系统:NY/T 2882.2-2016[S]. 北京:中国农业出版社, 2016
    Veith G D, DeFoe D L, Bergstedt B V. Measuring and estimating the bioconcentration factor of chemicals in fish[J]. Journal of the Fish Research Board of Canada, 1979, 36(9):1040-1048
    中国农业农村部农药检定所. 中国农药信息网[EB/OL]. (2021-06-01)[2021-10-13]. http://www.icama.org.cn
    中国农业农村部农药检定所. TOP-RICE模型操作手册[R]. 北京:中国农业农村部农药检定所, 2014:2-6
    陈诗卉, 姜锦林, 张焕朝, 等. 毒死蜱在我国水稻上登记现状及水生态风险评估[J]. 中国环境科学, 2020, 40(8):3585-3594

    Chen S H, Jiang J L, Zhang H C, et al. Registration status of chlorpyrifos products for use on rice and its risk assessment for aquatic ecosystem in China[J]. China Environmental Science, 2020, 40(8):3585-3594(in Chinese)

    中国农业农村部农药检定所. 农药地表水暴露模型[R]. 北京:中国农业农村部农药检定所, 2020:1-11
    University of Hertfordshire. PAN Pesticide Database[EB/OL]. (2021-06-01)[2021-10-13]. https://www.pesticideinfo.org/chemical/PRI1372
    University of Hertfordshire. Pesticide Properties Database[EB/OL]. (2021-04-27)[2021-10-13]. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/54.htm#0
    United States Environmental Protection Agency (US EPA). Ecotox knowledge base[EB/OL]. (2021-06-15)[2021-10-13]. https://cfpub.epa.gov/ecotox/search.cfm
    European Food Safety Authority (EFSA). Public consultation on the active substance azoxystrobin[EB/OL].(2009-08-07)[2021-10-13].https://www.efsa.europa.eu/sites/default/files/consultation/consultation/327.zip
    张国祥, 周军英, 姜锦林, 等. 嘧菌酯在稻田使用后对水生生物的影响[J]. 农药, 2013, 52(10):747-749

    Zhang G X, Zhou J Y, Jiang J L, et al. Impact of azoxystrobin on aquatic organisms in the pond nearby paddy field[J]. Agrochemicals, 2013, 52(10):747-749(in Chinese)

    张国祥. 稻田使用农药水生生态风险评价技术建立与应用研究[D]. 南京:南京信息工程大学, 2014:74-75 Zhang G X. Development and case study of aquatic ecological risk assessment technique for using pesticides in paddy fields[D]. Nanjing:Nanjing University of Information Science & Technology, 2014:74

    -75(in Chinese)

    毛连纲, 周艳明, 张兰, 等. 基于TOP-RICE模型嘧菌酯·噻呋酰胺4%展膜油剂稻田水溢出对水生生态系统风险评估研究[J]. 生态毒理学报, 2017, 12(4):153-163

    Mao L G, Zhou Y M, Zhang L, et al. Risk assessment of azoxystrobin · thifluzamide 4% spreading oil water overflow in rice paddies on aquatic ecosystem based on TOP-RICE model[J]. Asian Journal of Ecotoxicology, 2017, 12(4):153-163(in Chinese)

    European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin[J]. EFSA Journal, 2010, 8(4):1-110
  • 加载中
计量
  • 文章访问数:  1755
  • HTML全文浏览数:  1755
  • PDF下载数:  39
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-13

嘧菌酯对典型农田周边水生生态风险评估

    通讯作者: 尹晓辉, E-mail: yinxh@zafu.edu.cn
    作者简介: 郑豪杰(1997—),男,硕士研究生,研究方向为农药生态毒理,E-mail:2228961324@qq.com
  • 1. 浙江农林大学现代农学院, 浙江省农产品品质改良技术研究重点实验室, 杭州 311300;
  • 2. 无规定马属动物疫病区管理中心, 杭州 311500;
  • 3. 丽水职业技术学院, 丽水 323000
基金项目:

国家自然科学基金资助项目(21007060);浙江省自然科学基金资助项目(LY14B070014)

摘要: 本文评价了嘧菌酯的生物富集风险,并利用Top-Rice和China-Psem模型,针对目前中国在水稻、小麦、柑橘和马铃薯4种主要作物上登记的所有嘧菌酯单剂产品进行水生态风险评估。结果显示,我国国内在这4种作物上所登记的嘧菌酯单剂共计6种剂型,80种(截至2021年5月),其中悬浮剂占比最大,为73.75%,其次为水分散粒剂,占18.75%,可湿性粉剂、超低容量液剂、悬浮种衣剂和颗粒剂分别占3.75%、1.25%、1.25%和1.25%。根据不同剂型嘧菌酯产品的施用方法,对其在4种作物上使用进行暴露分析,结果显示,不同剂型嘧菌酯在水稻、小麦、柑橘和马铃薯上施用后,其预测环境浓度(predicted environmental concentration,PEC)范围分别为12.03~300.04、0.03~31.33、4.40~50.51和0.44~27.07 μg·L-1。风险表征结果显示,嘧菌酯在4种作物上使用后,针对不同分组,风险商值(risk quotient,RQ)>1的分组分别占总模拟组的82.81%、20.24%、55.56%和28.47%,但嘧菌酯生物富集风险可接受。总之,目前在中国4种作物上登记使用的嘧菌酯产品对水生生态系统风险不可忽视,但因本研究针对其施药方法模式的分析偏保守,使得评价结果具有一定保守性。

English Abstract

参考文献 (40)

目录

/

返回文章
返回