河流环境DNA科学图谱及其主题演变

张文丽, 徐耀阳, 潘文斌. 河流环境DNA科学图谱及其主题演变[J]. 生态毒理学报, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001
引用本文: 张文丽, 徐耀阳, 潘文斌. 河流环境DNA科学图谱及其主题演变[J]. 生态毒理学报, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001
Zhang Wenli, Xu Yaoyang, Pan Wenbin. Scientific Mapping and Thematic Evolution of River Environmental DNA[J]. Asian journal of ecotoxicology, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001
Citation: Zhang Wenli, Xu Yaoyang, Pan Wenbin. Scientific Mapping and Thematic Evolution of River Environmental DNA[J]. Asian journal of ecotoxicology, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001

河流环境DNA科学图谱及其主题演变

    作者简介: 张文丽(1998-),女,硕士研究生,研究方向为流域生物多样性,E-mail:wenlizhang@iue.ac.cn
    通讯作者: 潘文斌, E-mail: wenbinpan@fzu.edu.cn
  • 基金项目:

    国家重点研发计划项目(2017YFE0119000)

  • 中图分类号: X171.5

Scientific Mapping and Thematic Evolution of River Environmental DNA

    Corresponding author: Pan Wenbin, wenbinpan@fzu.edu.cn
  • Fund Project:
  • 摘要: 人类活动不断对河流生态系统产生影响,并且施加了巨大的压力。为了制定有效措施缓解河流生态系统的压力,需要获得大量有效的河流水生生物信息。环境DNA (environmental DNA,eDNA)技术作为近期环境科学的研究热点,是监测河流水生生物的有效工具。本文选取了Web of Science数据库(Web of Science Database,WOS)中1990—2020年的2 151篇相关文献进行数据挖掘及其可视化分析。河流eDNA研究的发文量逐年递增,在不同时期该研究领域具有不同的研究热点,研究重心逐渐从水生微生物的研究转向更广泛的生态监测、河流管理等方面。关键词频次分析表明,“biodiversity”“conservation”“metabarcoding”是河流eDNA研究持续的研究热点。学科方向的占比变化表明,河流eDNA在微生物学中的研究占比已经大大降低。在国际合作方面,美国是国际合作文章数量最多的国家,但是瑞士、法国、西班牙与他国合作数量占比却位于前列。eDNA技术在收集河流信息方面简单有效,其应用越来越多地应用于河流入侵物种调查、渔业和河流保护,从而可以为决策者应对环境变化的干预和管理活动提供信息支持。
  • 加载中
  • 唐涛, 蔡庆华, 刘建康. 河流生态系统健康及其评价[J]. 应用生态学报, 2002, 13(9):1191-1194

    Tang T, Cai Q H, Liu J K. River ecosystem health and its assessment[J]. Chinese Journal of Applied Ecology, 2002, 13(9):1191-1194(in Chinese)

    Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity:Importance, threats, status and conservation challenges[J]. Biological Reviews of the Cambridge Philosophical Society, 2006, 81(2):163-182
    Freeman M C, Pringle C M, Jackson C R. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional Scales1[J]. Journal of the American Water Resources Association, 2007, 43(1):5-14
    Crookes S, Heer T, Castañeda R A, et al. Monitoring the silver carp invasion in Africa:A case study using environmental DNA (eDNA) in dangerous watersheds[J]. NeoBiota, 2020, 56(56):31-47
    Barnes M A, Turner C R. The ecology of environmental DNA and implications for conservation genetics[J]. Conservation Genetics, 2016, 17(1):1-17
    Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4):423-425
    Ananiadou S, Kell D B, Tsujii J I. Text mining and its potential applications in systems biology[J]. Trends in Biotechnology, 2006, 24(12):571-579
    Chen C M. Searching for intellectual turning points:Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1):5303-5310
    陈俊梅, 张文翔, 刘甜甜, 等. 基于CiteSpace和知网数据库的《湖泊科学》创刊30年(1989-2018年)发表论文的文献计量学分析[J]. 湖泊科学, 2019, 31(4):891-906

    Chen J M, Zhang W X, Liu T T, et al. Scientometric analysis of papers published in 1989-2018 of Journal of Lake Sciences based on CiteSpace and CNKI database[J]. Journal of Lake Sciences, 2019, 31(4):891-906(in Chinese)

    毛文山, 赵红莉, 蒋云钟, 等. 基于文献计量学的国内水生态环境研究知识图谱构建与应用[J]. 水利学报, 2019, 50(11):1400-1416

    Mao W S, Zhao H L, Jiang Y Z, et al. Construction and application of knowledge graph of domestic water eco-environment based on bibliometrics[J]. Journal of Hydraulic Engineering, 2019, 50(11):1400-1416(in Chinese)

    Giovannoni S J, Britschgi T B, Moyer C L, et al. Genetic diversity in Sargasso Sea bacterioplankton[J]. Nature, 1990, 345(6270):60-63
    van Eck N J, Waltman L. Software survey:VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538
    Handelsman J. Metagenomics:Application of genomics to uncultured microorganisms[J]. Microbiology and Molecular Biology Reviews, 2004, 68(4):669-685
    Baker G C, Smith J J, Cowan D A. Review and re-analysis of domain-specific 16S primers[J]. Journal of Microbiological Methods, 2003, 55(3):541-555
    Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Molecular Ecology, 2012, 21(11):2565-2573
    Butchart S H, Walpole M, Collen B, et al. Global biodiversity:Indicators of recent declines[J]. Science, 2010, 328(5982):1164-1168
    Maxam A M, Gilbert W. A new method for sequencing DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(2):560-564
    Hebert P D, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes[J]. Proceedings Biological Sciences, 2003, 270(1512):313-321
    Pompanon F, Coissac É, Taberlet P. Metabarcoding, a new way of analysing biodiversity[J]. Biofutur, 2011, 319(319):30-32
    Grad Y H, Lipsitch M, Feldgarden M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8):3065-3070
    Goren A, Ozsolak F, Shoresh N, et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA[J]. Nature Methods, 2010, 7(1):47-49
    Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes:A new frontier for natural products[J]. Chemistry & Biology, 1998, 5(10):R245-R249
    Ji Y Q, Ashton L, Pedley S M, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding[J]. Ecology Letters, 2013, 16(10):1245-1257
    Dafforn K, Baird D, Chariton A, et al. Faster, higher and stronger? The pros and cons of molecular faunal data for assessing ecosystem condition[J]. Advances in Ecological Research, 2014, 51:1-40
    Guillerault N, Bouletreau S, Iribar A, et al. Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet[J]. Journal of Fish Biology, 2017, 90(5):2214-2219
    马睿, 陈建徽, 刘建宝, 等. 湖泊沉积物DNA在气候环境变化和生态系统响应研究中的应用[J]. 湖泊科学, 2021, 33(3):653-666

    Ma R, Chen J H, Liu J B, et al. Progress in the application of lake sediment DNA in climate and environmental change and ecosystem response[J]. Journal of Lake Sciences, 2021, 33(3):653-666(in Chinese)

    Dejean T, Valentini A, Miquel C, et al. Improved detection of an alien invasive species through environmental DNA barcoding:The example of the American bullfrog Lithobates catesbeianus[J]. Journal of Applied Ecology, 2012, 49(4):953-959
    Takahara T, Minamoto T, Doi H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds[J]. PLoS One, 2013, 8(2):e56584
    PilliodDavid S, GoldbergCaren S, ArkleRobert S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8):1123-1130
    Dougherty M M, Larson E R, Renshaw M A, et al. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances[J]. The Journal of Applied Ecology, 2016, 53(3):722-732
    Vörös J, Márton O, Schmidt B R, et al. Surveying Europe's only cave-dwelling chordate species (Proteus anguinus) using environmental DNA[J]. PLoS One, 2017, 12(1):e0170945
    Xu Y Y, Boeing W J. Mapping biofuel field:A bibliometric evaluation of research output[J]. Renewable and Sustainable Energy Reviews, 2013, 28:82-91
    Carraro L, Mächler E, Wüthrich R, et al. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems[J]. Nature Communications, 2020, 11(1):3585
    Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401):59-67
    Aylagas E, Borja Á, Muxika I, et al. Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks[J]. Ecological Indicators, 2018, 95:194-202
    Ogram A, Sayler G S, Barkay T. The extraction and purification of microbial DNA from sediments[J]. Journal of Microbiological Methods, 1987, 7(2-3):57-66
    Sogin M L, Morrison H G, Huber J A, et al. Microbial diversity in the deep sea and the underexplored "rare biosphere"[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32):12115-12120
    Andersson A F, Lindberg M, Jakobsson H, et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing[J]. PLoS One, 2008, 3(7):e2836
    Hajibabaei M, Shokralla S, Zhou X, et al. Environmental barcoding:A next-generation sequencing approach for biomonitoring applications using river benthos[J]. PLoS One, 2011, 6(4):e17497
    Deagle B E, Roger K, Jarman S N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces[J]. Molecular Ecology, 2009, 18(9):2022-2038
    Shu L, Ludwig A, Peng Z G. Standards for methods utilizing environmental DNA for detection of fish species[J]. Genes, 2020, 11(3):296
    Tillotson M D, Kelly R P, Duda J J, et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales[J]. Biological Conservation, 2018, 220:1-11
    Pan W B, Huang H, Yao P C, et al. Assessment methods of small watershed ecosystem health[J]. Polish Journal of Environmental Studies, 2020, 30(2):1749-1769
    Peterson A, Soberón J. Essential biodiversity variables are not global[J]. Biodiversity and Conservation, 2018, 27:1277-1288
    王浩. 水生态文明建设的理论基础及若干关键问题[J]. 中国水利, 2016(19):5-7 Wang H. Theoretical basis and key problems of water ecological civilization construction[J]. China Water Resources, 2016

    (19):5-7(in Chinese)

    Wang P Y, Yan Z G, Yang S W, et al. Environmental DNA:An emerging tool in ecological assessment[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(5):651-656
    Yang Y Z, Gao Y C, Huang X N, et al. Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river[J]. Environmental Pollution, 2019, 245:290-299
    Bastos Gomes G, Hutson K S, Domingos J A, et al. Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fish farms[J]. Aquaculture, 2017, 479:467-473
    Peters L, Spatharis S, Dario M A, et al. Environmental DNA:A new low-cost monitoring tool for pathogens in salmonid aquaculture[J]. Frontiers in Microbiology, 2018, 9:3009
    刘莹, 韩锰, 王文磊, 等. 高通量技术在微生物培养中的应用进展及分子测序对比分析[J]. 安徽农业科学, 2020, 48(15):16-19

    Liu Y, Han M, Wang W L, et al. Application progress of high-throughput technology in microbial culture and comparative analysis of molecular sequencing[J]. Journal of Anhui Agricultural Sciences, 2020, 48(15):16-19(in Chinese)

    Rojahn J, Pearce L, Gleeson D M, et al. The value of quantitative environmental DNA analyses for the management of invasive and endangered native fish[J]. Freshwater Biology, 2021, 66(8):1619-1629
    Rees H, Maddison B, Middleditch D J, et al. The detection of aquatic animal species using environmental DNA-A review of eDNA as a survey tool in ecology[J]. Journal of Applied Ecology, 2014, 51:1450-1459
    Cantera I, Decotte J B, Dejean T, et al. Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach[J]. Molecular Ecology Resources, 2022, 22(4):1274-1283
    Itakura H, Wakiya R, Yamamoto S, et al. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale[J]. Aquatic Conservation Marine and Freshwater Ecosystems, 2019, 29(3):313-361
    孙晶莹, 杨江华, 张效伟. 环境DNA(eDNA)宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究[J]. 生态毒理学报, 2018, 13(5):76-86

    Sun J Y, Yang J H, Zhang X W. Identification and biomass monitoring of zooplankton Cladocera species with eDNA metabarcoding technology[J]. Asian Journal of Ecotoxicology, 2018, 13(5):76-86(in Chinese)

    Sepulveda A, Schmidt C, Amberg J, et al. Adding invasive species biosurveillance to the US Geological Survey streamgage network[J]. Ecosphere, 2019, 10(8):e02843
    Stewart K A. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA[J]. Biodiversity and Conservation, 2019, 28(5):983-1001
    Lacoursière-Roussel A, Rosabal M, Bernatchez L. Estimating fish abundance and biomass from eDNA concentrations:Variability among capture methods and environmental conditions[J]. Molecular Ecology Resources, 2016, 16(6):1401-1414
    Francesco F G, Pierre T, Eric C. How to limit false positives in environmental DNA and metabarcoding?[J]. Molecular Ecology Resources, 2016, 16(3):604-607
    Doi H, Fukaya K, Oka S I, et al. Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model[J]. Scientific Reports, 2019, 9(1):3581
    Tréguier A, Paillisson J M, Dejean T, et al. Environmental DNA surveillance for invertebrate species:Advantages and technical limitations to detect invasive crayfish "Procambarus clarkii" in freshwater ponds[J]. Journal of Applied Ecology, 2014, 51(4):871-879
    Currier C A, Morris T J, Wilson C C, et al. Validation of environmental DNA (EDNA) as a Detection tool for at-risk freshwater pearly mussel species (Bivalvia:Unionidae)[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2018, 28(3):545-558
    Thomsen P F, Sigsgaard E E. Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods[J]. Ecology and Evolution, 2019, 9(4):1665-1679
    Shogren A J, Tank J L, Andruszkiewicz E, et al. Controls on eDNA movement in streams:Transport, retention, and resuspension[J]. Scientific Reports, 2017, 7(1):5065
    Carraro L, Hartikainen H, Jokela J, et al. Estimating species distribution and abundance in river networks using environmental DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(46):11724-11729
    Beng K C, Corlett R T. Applications of environmental DNA (eDNA) in ecology and conservation:Opportunities, challenges and prospects[J]. Biodiversity and Conservation, 2020, 29(7):2089-2121
    Rose J P, Wademan C, Weir S, et al. Traditional trapping methods outperform eDNA sampling for introduced semi-aquatic snakes[J]. PLoS One, 2019, 14(7):e0219244
    Sales N G, Wangensteen O S, Carvalho D C, et al. Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding[J]. The Science of the Total Environment, 2021, 754:142096
  • 加载中
计量
  • 文章访问数:  2292
  • HTML全文浏览数:  2292
  • PDF下载数:  166
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-23
张文丽, 徐耀阳, 潘文斌. 河流环境DNA科学图谱及其主题演变[J]. 生态毒理学报, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001
引用本文: 张文丽, 徐耀阳, 潘文斌. 河流环境DNA科学图谱及其主题演变[J]. 生态毒理学报, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001
Zhang Wenli, Xu Yaoyang, Pan Wenbin. Scientific Mapping and Thematic Evolution of River Environmental DNA[J]. Asian journal of ecotoxicology, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001
Citation: Zhang Wenli, Xu Yaoyang, Pan Wenbin. Scientific Mapping and Thematic Evolution of River Environmental DNA[J]. Asian journal of ecotoxicology, 2022, 17(5): 82-94. doi: 10.7524/AJE.1673-5897.20220223001

河流环境DNA科学图谱及其主题演变

    通讯作者: 潘文斌, E-mail: wenbinpan@fzu.edu.cn
    作者简介: 张文丽(1998-),女,硕士研究生,研究方向为流域生物多样性,E-mail:wenlizhang@iue.ac.cn
  • 1. 福州大学环境与安全工程学院, 福州 350108;
  • 2. 中国科学院城市环境研究所城市环境与健康重点实验室, 厦门 361021;
  • 3. 中国科学院大学, 北京 100049
基金项目:

国家重点研发计划项目(2017YFE0119000)

摘要: 人类活动不断对河流生态系统产生影响,并且施加了巨大的压力。为了制定有效措施缓解河流生态系统的压力,需要获得大量有效的河流水生生物信息。环境DNA (environmental DNA,eDNA)技术作为近期环境科学的研究热点,是监测河流水生生物的有效工具。本文选取了Web of Science数据库(Web of Science Database,WOS)中1990—2020年的2 151篇相关文献进行数据挖掘及其可视化分析。河流eDNA研究的发文量逐年递增,在不同时期该研究领域具有不同的研究热点,研究重心逐渐从水生微生物的研究转向更广泛的生态监测、河流管理等方面。关键词频次分析表明,“biodiversity”“conservation”“metabarcoding”是河流eDNA研究持续的研究热点。学科方向的占比变化表明,河流eDNA在微生物学中的研究占比已经大大降低。在国际合作方面,美国是国际合作文章数量最多的国家,但是瑞士、法国、西班牙与他国合作数量占比却位于前列。eDNA技术在收集河流信息方面简单有效,其应用越来越多地应用于河流入侵物种调查、渔业和河流保护,从而可以为决策者应对环境变化的干预和管理活动提供信息支持。

English Abstract

参考文献 (68)

返回顶部

目录

/

返回文章
返回