稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究

陈越, 杨琼, 王贤珍, 吕晓洁, 荣伟雅, 李宇星, 刘青, 王伟伟, 宋晶, 王宪宗, 刘少贞. 稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究[J]. 生态毒理学报, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001
引用本文: 陈越, 杨琼, 王贤珍, 吕晓洁, 荣伟雅, 李宇星, 刘青, 王伟伟, 宋晶, 王宪宗, 刘少贞. 稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究[J]. 生态毒理学报, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001
Chen Yue, Yang Qiong, Wang Xianzhen, Lv Xiaojie, Rong Weiya, Li Yuxing, Liu Qing, Wang Weiwei, Song Jing, Wang Xianzong, Liu Shaozhen. Effect of 17α-methyltestosterone on Gonad Development Mediated through KISS/GPR54 System in Brain of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001
Citation: Chen Yue, Yang Qiong, Wang Xianzhen, Lv Xiaojie, Rong Weiya, Li Yuxing, Liu Qing, Wang Weiwei, Song Jing, Wang Xianzong, Liu Shaozhen. Effect of 17α-methyltestosterone on Gonad Development Mediated through KISS/GPR54 System in Brain of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001

稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究

    作者简介: 陈越(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:2412229734@qq.com
    通讯作者: 刘少贞, E-mail: shmily8316@126.com
  • 基金项目:

    国家自然科学基金资助项目(31600416);山西省自然科学基金资助项目(201601D202078);山西农业大学引进人才博士科研启动经费(2014YJ08);山西省畜牧“1331重点学科”(J201911306)

  • 中图分类号: X171.5

Effect of 17α-methyltestosterone on Gonad Development Mediated through KISS/GPR54 System in Brain of Gobiocypris rarus

    Corresponding author: Liu Shaozhen, shmily8316@126.com
  • Fund Project:
  • 摘要: 17α-甲基睾酮(17α-methyltestosterone,MT)是一种人工合成的具有雄激素效应的环境内分泌干扰物。为了探究MT通过KISS/GPR54系统及其相关miRNAs干扰稀有鮈鲫性腺成熟作用机制,采用0、25、50和100 ng·L-1 MT暴露稀有鮈鲫7、14和21 d。石蜡组织切片(H-E染色)观察MT对稀有鮈鲫性腺组织学的影响;实时荧光定量PCR (qRT-PCR)检测雌、雄鱼脑中kiss1kiss2GPR54αGPR54β基因mRNA的表达量以及kiss1相关miRNAs (miR-25-3p、miR-92a-3p、miR-137-3p、miR-199-3p和miR-324-3p)的表达量。结果显示,随着暴露时间的延长和暴露浓度的升高,性腺退化的程度逐渐严重,成熟卵细胞和成熟精子比例逐渐降低。MT处理雌鱼7 d,各处理组GPR54β基因表达量均显著降低。处理14 d,高浓度组kiss1kiss2GPR54αGPR54β基因mRNA表达量均显著低于对照组。暴露雌鱼21 d,各处理组kiss1GPR54α表达量均显著降低。MT处理雄鱼7 d,中浓度组kiss1基因表达量显著降低,高浓度组kiss1基因表达量显著升高,MT (25、50和100 ng·L-1)处理组kiss2基因表达量均显著升高。MT处理雄鱼14 d,kiss2基因表达量均显著降低。MT处理21 d,3个处理组雄鱼kiss1表达量均显著升高,GPR54β表达量则显著降低。低浓度MT处理雌鱼7 d,脑中miR-25-3p、miR-92a-3p、miR-137-3p和miR-199-3p表达显著升高,kiss1基因表达显著降低,呈负相关。MT处理雄鱼21 d,各处理组miR-92a-3p和miR-137-3p表达量均降低,与kiss1表达量呈负相关。MT通过干扰稀有鮈鲫脑中miR-25-3p、miR-92a-3p、miR-137-3p、miR-199-3p和miR-324-3p表达量,调控kiss1基因mRNA表达,进而干扰下丘脑-垂体-性腺轴上游刺激因子KISS/GPR54系统,导致类固醇激素分泌异常,性腺发育受阻。
  • 加载中
  • 黄苑, 张维, 王瑞国, 等. 双酚类化合物污染现状和内分泌干扰效应研究进展[J]. 生态毒理学报, 2022, 17(1):60-81

    Huang Y, Zhang W, Wang R G, et al. Advances on pollution status and endocrine disrupting effects of bisphenols[J]. Asian Journal of Ecotoxicology, 2022, 17(1):60-81(in Chinese)

    Wang S, Zhu Z L, He J F, et al. Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China:Distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus[J]. Environmental Pollution, 2018, 243(Pt A):103-114
    Liu S, Chen H, Zhou G J, et al. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea[J]. The Science of the Total Environment, 2015, 536:99-107
    王梦圆, 张龙飞, 汤云瑜, 等. 几种水生模式生物在持久性有机污染物毒理学评价中的研究进展[J]. 环境化学, 2021, 40(5):1361-1378

    Wang M Y, Zhang L F, Tang Y Y, et al. Research progress of several aquatic biological models in toxicological evaluation of persistent organic pollutants[J]. Environmental Chemistry, 2021, 40(5):1361-1378(in Chinese)

    刘少贞, 杨琼, 周俊亮, 等. 17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响[J]. 生态毒理学报, 2021, 16(5):87-101

    Liu S Z, Yang Q, Zhou J L, et al. Effects of 17α-methyltestosterone on lipid metabolism in liver of Gobiocypris rarus[J]. Asian Journal of Ecotoxicology, 2021, 16(5):87-101(in Chinese)

    侯丽萍, 何骏驹, 冯子懿, 等. 甲基睾酮对雌斑马鱼内分泌干扰效应的研究[J]. 湖南农业科学, 2017(3):70-73 Hou L P, He J J, Feng Z Y, et al. Endocrine disruption of methyltestosterone on zebra fish[J]. Hunan Agricultural Sciences, 2017

    (3):70-73(in Chinese)

    Orn S, Svenson A, Viktor T, et al. Male-biased sex ratios and vitellogenin induction in zebrafish exposed to effluent water from a Swedish pulp mill[J]. Archives of Environmental Contamination and Toxicology, 2006, 51(3):445-451
    周家辉, 杜金星, 姜鹏, 等. 17α-甲基睾酮对大口黑鲈生长及性腺发育的影响[J]. 中国水产科学, 2021, 28(9):1109-1117

    Zhou J H, Du J X, Jiang P, et al. Effects of 17α-methyltestosterone on growth and sex differentiation in largemouth bass (Micropterus salmoides)[J]. Journal of Fishery Sciences of China, 2021, 28(9):1109-1117(in Chinese)

    刘少贞, 朱玉婷, 赵凌瑞. 17α-甲基睾酮对麦穗鱼性腺组织学的影响[J]. 山西农业大学学报:自然科学版, 2016, 36(2):147-152

    Liu S Z, Zhu Y T, Zhao L R. Effect of MT on gonadal histology of Pseudorasbora parva[J]. Journal of Shanxi Agricultural University:Natural Science Edition, 2016, 36(2):147-152(in Chinese)

    Shi Y, Zhang Y, Li S S, et al. Molecular identification of the Kiss2/Kiss1ra system and its potential function during 17alpha-methyltestosterone-induced sex reversal in the orange-spotted grouper, Epinephelus coioides[J]. Biology of Reproduction, 2010, 83(1):63-74
    甄婗, 吕拥芬, 李嫔. TTF1在雌鼠下丘脑的分布及其与KiSS1和GnRH表达的关系[J]. 上海交通大学学报:医学版, 2018, 38(6):598-604

    Zhen N, Lv Y F, Li P. Expression of TTF1 in hypothalamus of female rats and its relationship with GnRH and KiSS1[J]. Journal of Shanghai Jiao Tong University:Medical Science, 2018, 38(6):598-604(in Chinese)

    d'Anglemont de Tassigny X, Fagg L A, Dixon J P, et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25):10714-10719
    Funes S, Hedrick J A, Vassileva G, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system[J]. Biochemical and Biophysical Research Communications, 2003, 312(4):1357-1363
    Li S S, Zhang Y, Liu Y, et al. Structural and functional multiplicity of the kisspeptin/GPR54 system in goldfish (Carassius auratus)[J]. The Journal of Endocrinology, 2009, 201(3):407-418
    Migaud H, Ismail R, Cowan M, et al. Kisspeptin and seasonal control of reproduction in male European sea bass (Dicentrarchus labrax)[J]. General and Comparative Endocrinology, 2012, 179(3):384-399
    李文笙, 王东方. 鱼类microRNA研究进展[J]. 水产学报, 2017, 41(4):628-639
    Sayed D, Abdellatif M. microRNAs in development and disease[J]. Physiological Reviews, 2011, 91(3):827-887
    Liu S Z, Yang Q, Chen Y, et al. Integrated analysis of mRNA- and miRNA-seq in the ovary of rare minnow Gobiocypris rarus in response to 17α-methyltestosterone[J]. Frontiers in Genetics, 2021, 12:695699
    Garaffo G, Conte D, Provero P, et al. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and-200, are required for the development of the olfactory and GnRH system[J]. Molecular and Cellular Neurosciences, 2015, 68:103-119
    Messina A, Langlet F, Chachlaki K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty[J]. Nature Neuroscience, 2016, 19(6):835-844
    陈佳贤, 李晓宁, 王欣, 等. miR-92a-3p和miR-25-3p海绵上调Kiss1并影响雌性小鼠的青春期启动及动情周期[J]. 中国生物化学与分子生物学报, 2021, 37(4):543-550

    Chen J X, Li X N, Wang X, et al. miR-92a-3p and miR-25-3p sponges up-regulate Kiss1 and affect the onset of puberty and estrous cycle of female mice[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(4):543-550(in Chinese)

    唐家彦, 黄娟, 黄连红, 等. 血清miR-137在中枢性性早熟女童中的临床检测意义[J]. 实用医学杂志, 2016, 32(15):2500-2503

    Tang J Y, Huang J, Huang L H, et al. The clinical detection significance of serum miR-137 in central precocious puberty girls[J]. The Journal of Practical Medicine, 2016, 32(15):2500-2503(in Chinese)

    Li X N, Xiao J H, Li K, et al. miR-199-3p modulates the onset of puberty in rodents probably by regulating the expression of Kiss1 via the p38 MAPK pathway[J]. Molecular and Cellular Endocrinology, 2020, 518:110994
    Romero-Ruiz A, Avendaño M S, Dominguez F, et al. Deregulation of miR-324/KISS1/kisspeptin in early ectopic pregnancy:Mechanistic findings with clinical and diagnostic implications[J]. American Journal of Obstetrics and Gynecology, 2019, 220(5):480.e1-480480.e17
    王剑伟, 曹文宣. 中国本土鱼类模式生物稀有鮈鲫研究应用的历史与现状[J]. 生态毒理学报, 2017, 12(2):20-33

    Wang J W, Cao W X. Gobiocypris rarus as a Chinese native model organism:History and current situation[J]. Asian Journal of Ecotoxicology, 2017, 12(2):20-33(in Chinese)

    王绿平, 张京佶, 赵华清. 稀有鮈鲫作为鱼类胚胎急性毒性试验受试鱼种的敏感性研究[J]. 生态毒理学报, 2021, 16(5):102-112

    Wang L P, Zhang J J, Zhao H Q. Sensitivity of Chinese rare minnows (Gobiocypris rarus) for fish embryo acute toxicity test[J]. Asian Journal of Ecotoxicology, 2021, 16(5):102-112(in Chinese)

    杨彦平. 稀有鮈鲫Kiss/GPR54基因克隆及17α-乙炔雌二醇暴露对其表达的影响[D]. 杨凌:西北农林科技大学, 2015:20 Yang Y P. Molecular identification of Kiss/GPR54 and function analysis with mRNA expression profiles exposure to 17α-ethinylestradiol in rare minnow Gobiocypris rarus[D]. Yangling:Northwest A & F University, 2015

    :20(in Chinese)

    Qin F, Wang L H, Liu S Z, et al. Characterization of reference genes in rare minnow, Gobiocypris rarus (Actinopterygii:Cypriniformes:Cyprinidae), in early postembryonic development and in response to EDCs treatment[J]. Acta Ichthyologica et Piscatoria, 2013, 43(2):127-138
    吴建阳, 何冰, 杜玉洁, 等. 利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析的方法[J]. 现代农业科技, 2017(5):278-281 Wu J Y, He B, Du Y J, et al. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science and Technology, 2017

    (5):278-281(in Chinese)

    史熊杰, 刘春生, 余珂, 等. 环境内分泌干扰物毒理学研究[J]. 化学进展, 2009, 21(S1):340-349

    Shi X J, Liu C S, Yu K, et al. Toxicological research on environmental endocrine disruptors[J]. Progress in Chemistry, 2009, 21(S1):340-349(in Chinese)

    姚汶励, 姜鹏, 白俊杰. 17α-甲基睾酮对草鱼性腺发育及性类固醇激素水平的影响[J]. 水产学报, 2019, 43(4):801-806

    , 809, 807 Yao W L, Jiang P, Bai J J. Effects of 17α-methyltestosterone on gonadal development and hormone levels in grass carp (Ctenopharyngodon idella)[J]. Journal of Fisheries of China, 2019, 43(4):801-806, 809, 807(in Chinese)

    Zou Y X, Wu Z H, Fan Z F, et al. Analyses of mRNA-seq and miRNA-seq of the brain reveal the sex differences of gene expression and regulation before and during gonadal differentiation in 17β-estradiol or 17α-methyltestosterone-induced olive flounder (Paralichthys olivaceus)[J]. Molecular Reproduction and Development, 2020, 87(1):78-90
    Liu S Z, Wang L H, Qin F, et al. Gonadal development and transcript profiling of steroidogenic enzymes in response to 17α-methyltestosterone in the rare minnow Gobiocypris rarus[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2014, 143:223-232
    Passini G, Sterzelecki F C, de Carvalho C V A, et al. 17α-methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation[J]. Theriogenology, 2018, 106:134-140
    赖晓健, 彭帅, 张哲, 等. 甲基睾酮暴露对鳗鲡精巢发育的影响[J]. 水产科学, 2021, 40(6):900-904

    Lai X J, Peng S, Zhang Z, et al. Testis development induced in Japanese eel Anguilla japonica by 17α-methyltestosterone exposure[J]. Fisheries Science, 2021, 40(6):900-904(in Chinese)

    García-Galiano D, Pinilla L, Tena-Sempere M. Sex steroids and the control of the Kiss1 system:Developmental roles and major regulatory actions[J]. Journal of Neuroendocrinology, 2012, 24(1):22-33
    卓琦. Kisspeptin调控鱼类生殖内分泌的研究进展[J]. 动物学研究, 2013, 34(5):519-530

    Zhuo Q. Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction[J]. Zoological Research, 2013, 34(5):519-530(in Chinese)

    Shahjahan M, Motohashi E, Doi H, et al. Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season[J]. General and Comparative Endocrinology, 2010, 169(1):48-57
    Han S K, Gottsch M L, Lee K J, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty[J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2005, 25(49):11349-11356
    Costa D P, Sinervo B. Field physiology:Physiological insights from animals in nature[J]. Annual Review of Physiology, 2004, 66:209-238
    王滨, 柳学周, 徐永江, 等. Kisspeptin对鱼类生殖轴的调控机制研究[J]. 渔业科学进展, 2018, 39(4):173-184

    Wang B, Liu X Z, Xu Y J, et al. Regulatory mechanisms of kisspeptin on the reproductive axis in fish[J]. Progress in Fishery Sciences, 2018, 39(4):173-184(in Chinese)

    张浩. 克氏双锯鱼kisspeptin/GPR54系统的分子鉴定和表达分析[D]. 海口:海南大学, 2019:51 Zhang H. Molecular characterization and expression analysis of kisspeptin/GPR54 system in anemonefish, Amphiprion clarkii[D]. Haikou:Hainan University, 2019:51

    (in Chinese)

    Felip A, Zanuy S, Pineda R, et al. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals[J]. Molecular and Cellular Endocrinology, 2009, 312(1-2):61-71
    Chang J P, Mar A, Wlasichuk M, et al. Kisspeptin-1 directly stimulates LH and GH secretion from goldfish pituitary cells in a Ca2+-dependent manner[J]. General and Comparative Endocrinology, 2012, 179(1):38-46
    Servili A, Le Page Y, Leprince J, et al. Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish[J]. Endocrinology, 2011, 152(4):1527-1540
    Kitahashi T, Ogawa S, Parhar I S. Cloning and expression of kiss2 in the zebrafish and medaka[J]. Endocrinology, 2009, 150(2):821-831
    Shen L C, Hong X X, Liu Y, et al. The miR-25-3p/Sp1 pathway is dysregulated in ovarian endometriosis[J]. The Journal of International Medical Research, 2020, 48(4):300060520918437
    Huang J H, Zhou Q H, Chen C C, et al. microRNA miR-92a-3p regulates breast cancer cell proliferation and metastasis via regulating B-cell translocation gene 2(BTG2)[J]. Bioengineered, 2021, 12(1):2033-2044
    孙丹, 周文婷, 吴绪峰, 等. miR-92a-3p靶向LATS2对宫颈癌细胞的增殖、凋亡和侵袭的影响和分子机制[J]. 广西医科大学学报, 2020, 37(10):1784-1790

    Sun D, Zhou W T, Wu X F, et al. Effect and molecular mechanism of miR-92a-3p targeting LATS2 on proliferation, apoptosis and invasion of cervical cancer cells[J]. Journal of Guangxi Medical University, 2020, 37(10):1784-1790(in Chinese)

    Presslauer C, Bizuayehu T T, Razmi K, et al. See-Thru-Gonad zebrafish line:Developmental and functional validation[J]. Reproduction, 2016, 152(5):507-517
  • 加载中
计量
  • 文章访问数:  1757
  • HTML全文浏览数:  1757
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-31
陈越, 杨琼, 王贤珍, 吕晓洁, 荣伟雅, 李宇星, 刘青, 王伟伟, 宋晶, 王宪宗, 刘少贞. 稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究[J]. 生态毒理学报, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001
引用本文: 陈越, 杨琼, 王贤珍, 吕晓洁, 荣伟雅, 李宇星, 刘青, 王伟伟, 宋晶, 王宪宗, 刘少贞. 稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究[J]. 生态毒理学报, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001
Chen Yue, Yang Qiong, Wang Xianzhen, Lv Xiaojie, Rong Weiya, Li Yuxing, Liu Qing, Wang Weiwei, Song Jing, Wang Xianzong, Liu Shaozhen. Effect of 17α-methyltestosterone on Gonad Development Mediated through KISS/GPR54 System in Brain of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001
Citation: Chen Yue, Yang Qiong, Wang Xianzhen, Lv Xiaojie, Rong Weiya, Li Yuxing, Liu Qing, Wang Weiwei, Song Jing, Wang Xianzong, Liu Shaozhen. Effect of 17α-methyltestosterone on Gonad Development Mediated through KISS/GPR54 System in Brain of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2022, 17(4): 150-163. doi: 10.7524/AJE.1673-5897.20220331001

稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究

    通讯作者: 刘少贞, E-mail: shmily8316@126.com
    作者简介: 陈越(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:2412229734@qq.com
  • 1. 山西农业大学动物科学学院, 太谷 030801;
  • 2. 山西省水产技术推广服务中心, 太原 030002
基金项目:

国家自然科学基金资助项目(31600416);山西省自然科学基金资助项目(201601D202078);山西农业大学引进人才博士科研启动经费(2014YJ08);山西省畜牧“1331重点学科”(J201911306)

摘要: 17α-甲基睾酮(17α-methyltestosterone,MT)是一种人工合成的具有雄激素效应的环境内分泌干扰物。为了探究MT通过KISS/GPR54系统及其相关miRNAs干扰稀有鮈鲫性腺成熟作用机制,采用0、25、50和100 ng·L-1 MT暴露稀有鮈鲫7、14和21 d。石蜡组织切片(H-E染色)观察MT对稀有鮈鲫性腺组织学的影响;实时荧光定量PCR (qRT-PCR)检测雌、雄鱼脑中kiss1kiss2GPR54αGPR54β基因mRNA的表达量以及kiss1相关miRNAs (miR-25-3p、miR-92a-3p、miR-137-3p、miR-199-3p和miR-324-3p)的表达量。结果显示,随着暴露时间的延长和暴露浓度的升高,性腺退化的程度逐渐严重,成熟卵细胞和成熟精子比例逐渐降低。MT处理雌鱼7 d,各处理组GPR54β基因表达量均显著降低。处理14 d,高浓度组kiss1kiss2GPR54αGPR54β基因mRNA表达量均显著低于对照组。暴露雌鱼21 d,各处理组kiss1GPR54α表达量均显著降低。MT处理雄鱼7 d,中浓度组kiss1基因表达量显著降低,高浓度组kiss1基因表达量显著升高,MT (25、50和100 ng·L-1)处理组kiss2基因表达量均显著升高。MT处理雄鱼14 d,kiss2基因表达量均显著降低。MT处理21 d,3个处理组雄鱼kiss1表达量均显著升高,GPR54β表达量则显著降低。低浓度MT处理雌鱼7 d,脑中miR-25-3p、miR-92a-3p、miR-137-3p和miR-199-3p表达显著升高,kiss1基因表达显著降低,呈负相关。MT处理雄鱼21 d,各处理组miR-92a-3p和miR-137-3p表达量均降低,与kiss1表达量呈负相关。MT通过干扰稀有鮈鲫脑中miR-25-3p、miR-92a-3p、miR-137-3p、miR-199-3p和miR-324-3p表达量,调控kiss1基因mRNA表达,进而干扰下丘脑-垂体-性腺轴上游刺激因子KISS/GPR54系统,导致类固醇激素分泌异常,性腺发育受阻。

English Abstract

参考文献 (50)

返回顶部

目录

/

返回文章
返回