儿童玩具中重金属污染及健康风险评价

张杰聪, 温云铎, 吴晓丹, 郑晓波. 儿童玩具中重金属污染及健康风险评价[J]. 生态毒理学报, 2022, 17(4): 345-353. doi: 10.7524/AJE.1673-5897.20210705003
引用本文: 张杰聪, 温云铎, 吴晓丹, 郑晓波. 儿童玩具中重金属污染及健康风险评价[J]. 生态毒理学报, 2022, 17(4): 345-353. doi: 10.7524/AJE.1673-5897.20210705003
Zhang Jiecong, Wen Yunduo, Wu Xiaodan, Zheng Xiaobo. Contamination and Health Risk Assessment of Heavy Metals in Toys[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 345-353. doi: 10.7524/AJE.1673-5897.20210705003
Citation: Zhang Jiecong, Wen Yunduo, Wu Xiaodan, Zheng Xiaobo. Contamination and Health Risk Assessment of Heavy Metals in Toys[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 345-353. doi: 10.7524/AJE.1673-5897.20210705003

儿童玩具中重金属污染及健康风险评价

    作者简介: 张杰聪(1997—),男,硕士研究生,研究方向为生态毒理学,E-mail:zjc3@stu.scau.edu.cn
    通讯作者: 郑晓波, E-mail: zhengxiaobo@scau.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(41877361)

  • 中图分类号: X171.5

Contamination and Health Risk Assessment of Heavy Metals in Toys

    Corresponding author: Zheng Xiaobo, zhengxiaobo@scau.edu.cn
  • Fund Project:
  • 摘要: 玩具是儿童摄入环境污染物的重要污染源。玩具的材质和再生塑料的使用可能对玩具中重金属等污染物的含量有较大影响,但这一问题尚未引起广泛关注。本研究检测了232个儿童玩具中的重金属浓度并讨论玩具中重金属的污染模式,意在探明儿童玩具中重金属污染现状并为儿童玩具的安全管理提供数据支持。Al、Ba、Cd、Co、Cr、Cu、Mn、Ni、Pb和Zn的总浓度分别为未检出(nd)~333 000、nd~206 000、nd~1 140、nd~2 610、nd~10 100、nd~798 000、nd~316 000、nd~3 350、nd~4 210和nd~1 450 000 ng·g-1,均未超过欧盟安全限值。研究发现毛绒和木质玩具中重金属检出率高于硬塑料和软塑料玩具。在泡沫玩具中,聚乙烯类(PE)产品中Cd和Mn的污染水平高于聚丙烯(PP)和聚氨酯(PU)。51%的硬塑料玩具为再生塑料材质。PP类再生塑料玩具中多种重金属的含量高于非再生塑料玩具,但不具有显著差异。儿童玩具中的重金属风险指数均<1,说明上述玩具对儿童造成的潜在风险水平较低。PP类再生塑料玩具带来的潜在健康风险需要关注。
  • 加载中
  • 蔚青, 李巧玲, 李冰茹, 等. 北京市典型有机设施蔬菜基地重金属污染特征及风险评估[J]. 生态毒理学报, 2019, 14(3):258-271

    Yu Q, Li Q L, Li B R, et al. Heavy metal pollution characteristics and risk assessment of typical organic facility vegetable bases in Beijing[J]. Asian Journal of Ecotoxicology, 2019, 14(3):258-271(in Chinese)

    Becker M, Edwards S, Massey R I. Toxic chemicals in toys and children's products:Limitations of current responses and recommendations for government and industry[J]. Environmental Science & Technology, 2010, 44(21):7986-7991
    United States Agency for Toxic Substances and Disease Registry (US ATSDR). Interaction profile for toxic substances:Lead, manganese, zinc, and copper[EB/OL]. (2020-11-04)[2021-07-05]. https://www.atsdr.cdc.gov/interactionprofiles/ip06.html
    United States Agency for Toxic Substances and Disease Registry (US ATSDR). Interaction profile for toxic substances:Arsenic, cadmium, chromium, and lead[EB/OL]. (2020-11-04)[2021-07-05]. https://www.atsdr.cdc.gov/interactionprofiles/ip04.html
    Lanphear B P, Hornung R, Khoury J, et al. Low-level environmental lead exposure and children's intellectual function:An international pooled analysis[J]. Environmental Health Perspectives, 2005, 113(7):894-899
    周小勇, 雷梅, 杨军, 等. 某铅冶炼厂对周边土壤质量和人体健康的影响[J]. 环境科学, 2013, 34(9):3675-3678

    Zhou X Y, Lei M, Yang J, et al. Effect of lead on soil quality and human health around a lead smeltery[J]. Environmental Science, 2013, 34(9):3675-3678(in Chinese)

    VanEngelen J G M, Park M V D Z, Janssen P J C M, et al. Chemicals in toys, a general methodology for assessment of chemical safety of toys with a focus on elements, RIVM report 320003001/2008[R]. Bilthoven:National Institute for Public Health and the Environment and Food and Consumer Product Safety Authority, 2008
    赵红军, 格鹏飞, 常旭红, 等. 镍的生理毒代动力学模型[J]. 卫生研究, 2017, 46(5):797-801

    Zhao H J, Ge P F, Chang X H, et al. Physiologically based toxicokinetic model for nickel[J]. Journal of Hygiene Research, 2017, 46(5):797-801(in Chinese)

    Yost L, Tao S, Egan S K, et al. Estimation of dietary intake of inorganic arsenic in US children[J]. Human and Ecological Risk Assessment, 2004, 10(3):473-483
    Sexton K, Adgate J L, Fredrickson A L, et al. Using biologic markers in blood to assess exposure to multiple environmental chemicals for inner-city children 3-6 years of age[J]. Environmental Health Perspectives, 2006, 114(3):453-459
    Guney M, Zagury G J. Heavy metals in toys and low-cost jewelry:Critical review of US and Canadian legislations and recommendations for testing[J]. Environmental Science & Technology, 2012, 46(8):4265-4274
    Babich M A, Bevington C, Dreyfus M A. Plasticizer migration from children's toys, child care articles, art materials, and school supplies[J]. Regulatory Toxicology and Pharmacology, 2020, 111:104574
    Guney M, Zagury G J. Contamination by ten harmful elements in toys and children's jewelry bought on the North American market[J]. Environmental Science & Technology, 2013, 47(11):5921-5930
    Aurisano N, Huang L, Milà i Canals L, et al. Chemicals of concern in plastic toys[J]. Environment International, 2021, 146:106194
    Dahab A A, Elhag D E A, Ahmed A B, et al. Determination of elemental toxicity migration limits, bioaccessibility and risk assessment of essential childcare products[J]. Environmental Science and Pollution Research, 2016, 23(4):3406-3413
    Cui X Y, Li S W, Zhang S J, et al. Toxic metals in children's toys and jewelry:Coupling bioaccessibility with risk assessment[J]. Environmental Pollution, 2015, 200:77-84
    Guney M, Zagury G J. Children's exposure to harmful elements in toys and low-cost jewelry:Characterizing risks and developing a comprehensive approach[J]. Journal of Hazardous Materials, 2014, 271:321-330
    Akimzhanova Z, Guney M, Kismelyeva S, et al. Contamination by eleven harmful elements in children's jewelry and toys from Central Asian market[J]. Environmental Science and Pollution Research, 2020, 27(17):21071-21083
    Cherif Lahimer M, Ayed N, Horriche J, et al. Characterization of plastic packaging additives:Food contact, stability and toxicity[J]. Arabian Journal of Chemistry, 2017, 10:S1938-S1954
    Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782
    Tran O T K, Luong T T, Tran H N, et al. Determination of phthalate esters in children's toys[J]. Science and Technology Development Journal, 2016, 19(3):79-88
    Karlsson S. Recycled polyolefins. Material properties and means for quality determination[J]. Advances in Polymer Science, 2004, 169:201-229
    Borling P, Engelund B, Sørensen H, et al. Survey, migration and health evaluation of chemical substances in toys and childcare products produced from foam plastic[R]. Odense:Danish Environmental Protection Agency, 2006
    Korfali S I, Sabra R, Jurdi M, et al. Assessment of toxic metals and phthalates in children's toys and clays[J]. Archives of Environmental Contamination and Toxicology, 2013, 65(3):368-381
    Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics:Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344:179-199
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 玩具安全第4部分:特定元素的迁移:GB 6675.4-2014[S]. 北京:中国标准出版社, 2016
    European Committee for Standardization. EN 71-3:2019 environmental standards[S]. Brussels:CEN-CENELEC Management Centre, 2019
    Karaś K, Frankowski M. Analysis of hazardous elements in children toys:Multi-elemental determination by chromatography and spectrometry methods[J]. Molecules, 2018, 23(11):3017
    Eriksen M K, Pivnenko K, Olsson M E, et al. Contamination in plastic recycling:Influence of metals on the quality of reprocessed plastic[J]. Waste Management, 2018, 79:595-606
    Whitt M, Brown W, Danes J E, et al. Migration of heavy metals from recycled polyethylene terephthalate during storage and microwave heating[J]. Journal of Plastic Film & Sheeting, 2016, 32(2):189-207
    Hansen E, Nilsson N H, Lithner D, et al. Hazardous substances in plastic materials[R]. Vejle:COWI and Danish Technological Institute, 2013
    US Environmental Protection Agency (US EPA). Child-specific exposure factors handbook:EPA/600/R-06/096F[R]. Washington DC:Office of Research and Development, 2008
    Soares E P, Saiki M, Wiebeck H. Determination of inorganic constituents and polymers in metallized plastic materials[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 264(1):9-13
    Greenway J A, Gerstenberger S. An evaluation of lead contamination in plastic toys collected from day care centers in the Las Vegas valley, Nevada, USA[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 85(4):363-366
    Kang S G, Zhu J X. Total lead content and its bioaccessibility in base materials of low-cost plastic toys bought on the Beijing market[J]. Journal of Material Cycles and Waste Management, 2015, 17(1):63-71
    Tulve N S, Suggs J C, McCurdy T, et al. Frequency of mouthing behavior in young children[J].Journal of Exposure Science & Environmental Epidemiology, 2002, 12(4):259-264
  • 加载中
计量
  • 文章访问数:  2376
  • HTML全文浏览数:  2376
  • PDF下载数:  46
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-05

儿童玩具中重金属污染及健康风险评价

    通讯作者: 郑晓波, E-mail: zhengxiaobo@scau.edu.cn
    作者简介: 张杰聪(1997—),男,硕士研究生,研究方向为生态毒理学,E-mail:zjc3@stu.scau.edu.cn
  • 华南农业大学资源环境学院, 广州 510642
基金项目:

国家自然科学基金面上项目(41877361)

摘要: 玩具是儿童摄入环境污染物的重要污染源。玩具的材质和再生塑料的使用可能对玩具中重金属等污染物的含量有较大影响,但这一问题尚未引起广泛关注。本研究检测了232个儿童玩具中的重金属浓度并讨论玩具中重金属的污染模式,意在探明儿童玩具中重金属污染现状并为儿童玩具的安全管理提供数据支持。Al、Ba、Cd、Co、Cr、Cu、Mn、Ni、Pb和Zn的总浓度分别为未检出(nd)~333 000、nd~206 000、nd~1 140、nd~2 610、nd~10 100、nd~798 000、nd~316 000、nd~3 350、nd~4 210和nd~1 450 000 ng·g-1,均未超过欧盟安全限值。研究发现毛绒和木质玩具中重金属检出率高于硬塑料和软塑料玩具。在泡沫玩具中,聚乙烯类(PE)产品中Cd和Mn的污染水平高于聚丙烯(PP)和聚氨酯(PU)。51%的硬塑料玩具为再生塑料材质。PP类再生塑料玩具中多种重金属的含量高于非再生塑料玩具,但不具有显著差异。儿童玩具中的重金属风险指数均<1,说明上述玩具对儿童造成的潜在风险水平较低。PP类再生塑料玩具带来的潜在健康风险需要关注。

English Abstract

参考文献 (36)

目录

/

返回文章
返回