腐霉利在油菜植株上的消解及在水培体系中的代谢研究
Degradation of Procymidone on Rape and Its Metabolism in Hydroponic System
-
摘要: 为了明确腐霉利在油菜植株上的消解和代谢行为,建立了腐霉利在油菜植株各部位的残留分析方法,开展了腐霉利在江苏省、湖南省和青海省三地油菜植株上的消解规律研究;通过室内水培模拟实验,鉴定了腐霉利在油菜植株和培养液中的代谢产物,揭示了其代谢途径。结果表明,腐霉利在江苏省、青海省和湖南省油菜各部位的原始沉积量为:叶>花序>荚>茎,在各部位中的消解动态均符合一级动力学方程(R2>0.88),半衰期在0.6~3.7 d之间,消解速率为花序>荚>茎>叶,消解速率在区域上呈现出江苏省>湖南省>青海省。通过高效液相色谱串联飞行时间质谱联用仪,在水培油菜植株中鉴定出腐霉利单脱氯产物M1(C13H12ClNO2),在培养液中鉴定出4个代谢产物腐霉利氧化产物M2(C13H13Cl2NO3)、3,5-二氯苯胺M3(C6H5Cl2N)、腐霉利氧化产物M4(C13H13Cl2NO4)和腐霉利氧化产物M5(C13H11Cl2NO3)。相关研究结果为腐霉利的合理使用及安全性评价提供了数据参考。Abstract: In order to clarify the degradation and metabolism behaviors of procymidone on rape, this paper established a residual analysis method of procymidone in different organs of rape plant, and carried out the degradation experiment of procymidone on rape plants in Jiangsu, Hunan and Qinghai provinces. The metabolites of procymidone in rape and culture fluid were identified, and the metabolic pathways were revealed through indoor hydroponic simulation experiment. The results showed that the initial residues of procymidone in different organs of the rape plant in Jiangsu, Qinghai and Hunan provinces were leaf>flower>pod>stem. The degradation dynamics followed to the first-order kinetic equation (R2 was greater than 0.88), and the half-life ranged from 0.6 d to 3.7 d. The degradation rates from fast to slow in different rape organs were flower>pod>sti>leaf, and the degradation rates were Jiangsu Province>Hunan Province>Qinghai Province in the region. The dechlorination product M1 (C13H12ClNO2) of procymidone in hydroponic rape plants, and four metabolites of procymidone in culture fluid, including oxidation product M2 (C13H13Cl2NO3), 3,5-dichloroaniline M3 (C6H5Cl2N), oxidation product M4 (C13H13Cl2NO4) and oxidation product M5 (C13H11Cl2NO3) were identified by liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry. The results provide data reference for the rational use and safety evaluation of procymidone.
-
Key words:
- procymidone /
- rape /
- residue /
- degradation /
- metabolism /
- high resolution mass spectrum
-
-
卢川, 李悦有, 翟黎芳, 等. 京津冀地区冬油菜种植现状与发展对策[J]. 现代农业科技, 2018(20): 43-45 Lu C, Li Y Y, Zhai L F, et al. Present situation and development countermeasures of winter rapeseed planting in Beijing-Tianjin-Hebei region [J]. Modern Agricultural Science and Technology, 2018 (20): 43-45 (in Chinese)
王璐. 中国油菜产业安全研究[D]. 武汉: 华中农业大学, 2014: 10-90 Wang L. Study on China’s rape industry security [D]. Wuhan: Huazhong Agricultural University, 2014: 10 -90 (in Chinese)
张宏军, 张佳, 刘学, 等. 我国油菜田农药的登记及应用概况[J]. 湖北农业科学, 2008, 47(7): 846-851 Zhang H J, Zhang J, Liu X, et al. The review of the registration and application of pesticide of canola in China [J]. Hubei Agricultural Sciences, 2008, 47(7): 846-851 (in Chinese)
董章辉, 张艳丽, 王虎, 等. 我国绿肥油菜研究进展及发展前景展望[J]. 河北农业科学, 2021, 25(4): 67-70 , 87 Dong Z H, Zhang Y L, Wang H, et al. Research progress and development prospect of green fertilizer rape in China [J]. Journal of Hebei Agricultural Sciences, 2021, 25(4): 67-70, 87 (in Chinese)
陈莎莎. 长江流域油菜生产规模效益研究[D]. 武汉: 华中农业大学, 2017: 3-80 Chen S S. The research of rapeseed production scale profit in Yangtze River Basin [D]. Wuhan: Huazhong Agricultural University, 2017: 3 -80 (in Chinese)
王春芝. 油菜菌核病的发病规律与综合防治技术[J]. 农技服务, 2008, 25(6): 55-56 谷维. 油菜菌核病的发生原因及综合防治对策[J]. 黑龙江农业科学, 2008(5): 75-77 Gu W. The occurrence causes and integrated control measures for Sclerotinia sclerotiorum [J]. Heilongjiang Agricultural Sciences, 2008 (5): 75-77 (in Chinese)
汪雷, 刘瑶, 丁一娟, 等. 油菜菌核病研究进展[J]. 西北农林科技大学学报: 自然科学版, 2015, 43(10): 85-93 Wang L, Liu Y, Ding Y J, et al. Advance in Sclerotinia stem rot of rapeseed [J]. Journal of Northwest A & F University: Natural Science Edition, 2015, 43(10): 85-93 (in Chinese)
冯韬. 油菜菌核病病理与防治研究进展[J]. 作物研究, 2014, 28(3): 316-320 周明国, 叶钟音, 刘经芬. 杀菌剂抗性进展[J]. 南京农业大学学报, 1994, 17(3): 33-41 Zhou M G, Ye Z Y, Liu J F. Progress of fungicide resistance research [J]. Journal of Nanjing Agricultural University, 1994, 17(3): 33-41 (in Chinese)
李红霞, 陆悦健, 周明国, 等. 油菜菌核病菌β-微管蛋白基因与多菌灵抗药性相关突变的研究[J]. 中国油料作物学报, 2003, 25(2): 56-60 Li H X, Lu Y J, Zhou M G, et al. Mutation in β-tubulin of Sclerotinia sclerotiorum conferring resistance to carbendazim in rapeseed field isolates [J]. Chinese Journal of Oil Crop Scieves, 2003, 25(2): 56-60 (in Chinese)
陈勇兵, 胡丽秋, 许美良. 20%腐霉利悬浮剂防治黄瓜菌核病的田间药效试验[J]. 安徽农业科学, 2007, 25: 7881-7920 Chen Y B, Hu L Q, Xu M L. Field efficacy test of 20 % protrichum suspension against Sclerotinia sclerotiorum of cucumber [J]. Journal of Anhui Agricultural Sciences, 2007, 25: 7881-7920 (in Chinese)
宋晰, 肖露, 林东, 等. 番茄灰霉病菌对腐霉利的抗药性检测及生物学性状研究[J]. 农药学学报, 2013, 15(4): 398-404 Song X, Xiao L, Lin D, et al. Detection of procymidone resistance and investigation of biological characteristics in Botrytis cinerea [J]. Chinese Journal of Pesticide Science, 2013, 15(4): 398-404 (in Chinese)
石志琦, 周明国, 叶钟音. 核盘菌对菌核净的抗药性机制初探[J]. 农药学学报, 2000, 2(2): 47-51 Shi Z Q, Zhou M G, Ye Z Y. Study on resistance mechanism of Sclerotinia sclerotiorum to dimethachlon [J]. Chinese Journal of Pesticide Science, 2000, 2(2): 47-51 (in Chinese)
张夕林, 孙雪梅, 张谷丰, 等. 油菜菌核病抗药性监测与综合治理技术的研究[J]. 农药科学与管理, 2003, 24(6): 18-22 Zhang X L, Sun X M, Zhang G F, et al. Preliminary report on the monitoring of the resistance of Sclerotinia libertiana to carbendazim and its integrated management [J]. Pesticide Science and Administration, 2003, 24(6): 18-22 (in Chinese)
Kapukiran F, Firat M, Chormey D S, et al. Accurate and sensitive determination method for procymidone and chlorflurenol in municipal wastewater, medical wastewater and irrigation canal water by GC-MS after vortex assisted switchable solvent liquid phase microextraction [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(6): 848-853 Wu A Y, Yu Q X, Lu H H, et al. Developmental toxicity of procymidone to larval zebrafish based on physiological and transcriptomic analysis [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 248: 109081 Sarmah A K, Close M E, Mason N W H. Dissipation and sorption of six commonly used pesticides in two contrasting soils of New Zealand [J]. Journal of Environmental Science and Health, Part B, 2009, 44(4): 325-336 Abe J, Tomigahara Y, Tarui H, et al. Identification of metabolism and excretion differences of procymidone between rats and humans using chimeric mice: Implications for differential developmental toxicity [J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 1955-1963 周勇, 朴秀英, 廖先骏, 等. 韭菜中腐霉利的残留检测及长期膳食暴露评估[J]. 农药学学报, 2021, 23(2): 373-379 Zhou Y, Piao X Y, Liao X J, et al. Residual risk verification and chronic dietary risk assessment of procymidone in Chinese chives [J]. Chinese Journal of Pesticide Science, 2021, 23(2): 373-379 (in Chinese)
中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部, 国家市场监督管理局. 食品安全国家标准 食品中农药最大残留量[S]. 北京: 中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部,国家市场监督管理局, 2021 杨莉, 冯光泉, 张文斌, 等. 固相萃取-GC-ECD法分析三七中腐霉利的消解动态及残留规律[J]. 农药, 2018, 57(12): 908-911 Yang L, Feng G Q, Zhang W B, et al. The residual dynamics and final residues of procymidone in Panax notoginseng by SPE-GC-ECD [J]. Agrochemicals, 2018, 57(12): 908-911 (in Chinese)
黄晓春. 腐霉利在韭菜中残留现状分析及风险评估[J]. 安徽农业科学, 2021, 49(7): 188-190 Huang X C. Status analysis and risk assessment of procymidone residues in leek [J]. Journal of Anhui Agricultural Sciences, 2021, 49(7): 188-190 (in Chinese)
陈柏. 15%腐霉利烟剂在保护地番茄及土壤中的消解动态与残留量[J]. 现代农药, 2014, 13(4): 39-41 Chen B. Residue and degradation dynamic of procymidone 15% FU in tomato and soil [J]. Modern Agrochemicals, 2014, 13(4): 39-41 (in Chinese)
Ambrus A, Buys M, Miyamoto J, et al. Analysis of residues of dicarboximide fungicides in food [J]. Pure and Applied Chemistry, 1999, 63: 747-762 Mikami N, Imanishi K, Yamada H, et al. Photolysis and hydrolysis of the fungicide procymidone in water [J]. Journal of Pesticide Science, 1984, 9(2): 223-228 Schwack W, Bourgeois B. Fungicides and photochemistry: Iprodione, procymidone, vinclozolin 1. photodehalogenation [J]. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 1989, 188(4): 346-347 Lai Q, Sun X F, Li L S, et al. Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish [J]. Chemosphere, 2021, 272: 129577 Racine C R, Ferguson T, Preston D, et al. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats [J]. Toxicology, 2016, 341-343: 47-55 -

计量
- 文章访问数: 2442
- HTML全文浏览数: 2442
- PDF下载数: 74
- 施引文献: 0