-
水是地球上含量最多的一种化合物,地球上接近3/4的面积覆盖着水,水的总体积约为13.8×108 km3[1]。随着电子科技产业和传统重工业的发展,对采矿、冶炼、金属电镀、颜料、电池制造、冶金工业的需求也越来越多[2-4]。加工这些产品的过程中产生了许多的重金属废水,企业废水的排放造成了水环境的污染,威胁到人类和生态系统的健康和稳定[5]。其中,铅、镉是日常工业生产中产生为数较多的重金属污染物[6],世界卫生组织对这几种污染物的毒性和生态毒性进行了定义。例如,铅是一种可以在较低浓度下对人类和环境具有较高毒性和毒副作用的物质[7],对于人类健康会产生各种短期和长期的毒副作用,包括对神经、心血管、肾脏、肠胃消化、血液循环和生殖系统的影响[8]。如果铜的摄取过量,会引起肝硬化、肠胃疾病、运动功能受阻和神经系统障碍[9-10]。镉暴露产生的污染经过肾脏器官的吸收积累会对人类产生各种各样的急慢性肾脏疾病[11]。不明原因慢性肾病(CKDu)是斯里兰卡北中部旱区高发的慢性疾病,目前有逐渐向周边地区蔓延的趋势,是影响斯里兰卡社会安定的民生问题,已受到世界卫生组织(WHO)等国际机构的高度关注。有关研究发现镉污染是斯里兰卡CKDu发病的一种潜在致病因[12]。因此,重金属离子污染物进入环境,不能进行自然或生物降解,其在环境中通过各形态之间的相互转化,在人、动物、植物中富集,从而对环境和人的健康造成严重危害。
目前,重金属离子污染处理技术有离子交换法[13],电化学方法[14],膜技术[15]等,但这些方法能耗高,技术要求高,操作过程复杂,从而限制了这些技术在实际废水处理中的应用。相比较其他技术,吸附法具有操作简单、处理成本低、应用范围广等特点,在废水处理中应用最为广泛[16]。在废水处理中使用的吸附剂可以分为矿物吸附剂、有机吸附剂、生物吸附剂和纳米碳质吸附剂[17]。纳米技术是近几年发展迅速的废水新技术[18],纳米材料具有大比表面积和高表面活性位点等特点,对于吸附去除水中的重金属离子污染物有独特的优势,在废水处理方面取得了一些效果[19]。纳米二维碳质材料因其独特的物理性质在水处理领域显示了较大的应用潜力,二维纳米材料的长度没有限制,远大于纳米级的厚度,因此,其具有更好的电子流动性和更多的吸附活性位点[20]。SHEN等[21]成功合成了类石墨烯g-C3N4二维材料,且将其应用于水中重金属离子的吸附和去除。然而,对于废水中重金属离子的处理,如何大量地制备成本低廉、合成方法简单、吸附量高的二维碳纳米材料还存在很多的挑战。
本研究利用尿素和乙二胺四乙酸作为前躯体,通过高温固相一步合成法,大量地合成二维氮掺杂的碳基多层纳米材料(2-D CNx);通过研究材料的结构特点,考察材料对废水中重金属Cd2+、Cu2+和Pb2+的吸附性能,包括等温吸附过程,时间对吸附的影响,溶液pH对材料吸附容量的影响;为进一步提高材料的实用化潜力,对材料进行动态吸附滤柱穿透实验,并对材料的吸附机理进行讨论,研究可为开发高效去除斯里兰卡地下水中氟、重金属等污染物的吸附剂提供参考。
一步法低温合成二维CNx纳米材料及其对水中重金属离子的吸附性能
2-D CNx nanomaterials synthesis at low temperature by one-step method and its performance on heavy metal ions adsorption in water
-
摘要: 利用尿素和乙二胺四乙酸钠盐通过一步法低温固相裂解合成了二维纳米碳氮材料(2-D CNx),实现了对水中重金属离子的吸附去除。系统地研究了2-D CNx对水中重金属离子Cd2+、Pb2+和Cu2+的吸附性能,其吸附动力学过程均符合准二级动力学模型,吸附等温线更符合Langmuir模型。结果表明:Cd2+、Cu2+和Pb2+的初始浓度均为40 mg·L−1,在25 ℃下,达到平衡时吸附量分别达到了79.4、58.5、72.8 mg·g−1;2-D CNx在比较广泛的pH范围(3.0~9.0)内对重金属离子都具有比较好的吸附效果;吸附剂在吸附柱过滤穿透实验中表现出很好的吸附效果和可重复利用性,且具有良好的机械稳定性。进一步的机理分析探明,吸附主要基于材料表面的羟基和重金属离子交换及氨基与重金属离子的络合协同作用。Abstract: 2-D CNx nanosheets were synthesized successfully via one-step solid-phase pyolysis of urea and EDTA at low temperature, and they were used to remove heavy metal ions from water. Batch adsorption experiments were conducted to systematically investigate the removal performance of Cd2+, Pb2+ and Cu2+. The results showed that the kinetics of heavy metal ions removal by 2-D CNx nanosheets followed the pesudo-second-order model, and the adsorption isotherms process followed Langmuir model. At the initial concentration of 40 mg·L−1 for Cd2+, Pb2+ or Cu2+, their maximum adsorption capacities on 2-D CNx nanosheets were 79.4, 58.5, 72.8 mg·g−1 when the temperature was 25 ℃, respectively. The 2-D CNx nanosheets had a high adsorption performance in a wide pH range of 3.0~9.0. Further, the column sorption test indicated that the adsorbents presented good adsorption effect, mechanical stability and reusability. The adsorption mechanism of heavy metals ions onto 2-D CNx nanosheets was mainly controlled by the ion exchange between carboxyl groups and the complexation between amino groups and heavy metal ions.
-
Key words:
- two-dimensional nanomaterials /
- carbon nitride /
- nano-adsorbents /
- adsorption /
- heavy metal ions
-
表 1 不同初始浓度下Cd2+、Cu2+和Pb2+离子的等温吸附Freundlich和Langmuir模型的拟合参数
Table 1. Langmuir and Freundlich adsorption isotherm parameters for Cd2+, Cu2+, Pb2+ on 2-D CNx nanomaterials at different concentrations
重金属离子 温度/℃ Freundlich Langmuir KF/(mg1−n·Ln·g−1) 1/n R2 qm,cal/(mg·g− 1) KL/(L·mg− 1) R2 Cd2+ 26 54.1 0.266 0.518 148.4 0.373 0.991 Cu2+ 26 53.9 0.096 0.875 90.6 0.217 0.991 Pb2+ 26 68.5 0.095 0.971 106.8 0.511 0.996 表 2 不同吸附剂对Cd2+、Cu2+和Pb2+离子最大吸附能力
Table 2. Maximum adsorption capacities of Cd2+, Cu2+, Pb2+ adsorbed by different adsorbents
表 3 2-D CNx吸附动力学参数
Table 3. Kinetics parameters for Cd2+, Cu2+, Pb2+ adsorption on 2-D CNx
模型 金属离子 初始浓度C0/
(mg·L− 1)qe(exp)/
(mg·g− 1)k1/min− 1 qe(cal)/
(mg·g− 1)R2 Pseudo-first-order Cd2+ 40 79.4 0.008 1.832 0.421 Cu2+ 40 56.0 0.096 0.875 0.338 Pb2+ 40 63.5 0.014 5.851 0.532 模型 金属离子 初始浓度C0/
(mg·L− 1)qe(exp)/
(mg·g− 1)k2/min− 1 qe(cal)/
(mg·g− 1)R2 Pseudo-second-order Cd2+ 40 79.4 0.066 79.6 0.999 Cu2+ 40 56.0 0.006 58.2 0.997 Pb2+ 40 63.5 0.000 1 79.6 0.999 -
[1] SOPHOCLEOUS M. Interactions between groundwater and surface water: The state of the science[J]. Hydrogeology Journal, 2002, 10(1): 52-67. doi: 10.1007/s10040-001-0170-8 [2] CHANAKYA H N, KHUNTIA H K, MUKHERJEE N, et al. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry wastewater[J]. Environmental Monitoring and Assessment, 2015, 187(12): 772. doi: 10.1007/s10661-015-4991-7 [3] BAKKE T, KLUNGSØYR J, SANNI S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry[J]. Marine Environmental Research, 2013, 92: 154-169. doi: 10.1016/j.marenvres.2013.09.012 [4] GARG V K, AMITA M, KUMAR R, et al. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste[J]. Dyes and Pigments, 2004, 63(3): 243-250. doi: 10.1016/j.dyepig.2004.03.005 [5] GUPTA V K, JAIN C K, ALI I, et al. Removal of cadmium and nickel from wastewater using bagasse fly ash: A sugar industry waste[J]. Water Research, 2003, 37(16): 4038-4044. doi: 10.1016/S0043-1354(03)00292-6 [6] KAŞKA Ö. Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry[J]. Energy Conversion and Management, 2014, 77: 108-117. doi: 10.1016/j.enconman.2013.09.026 [7] BOSCH A C, O'NEILL B, SIGGE G O, et al. Heavy metals in marine fish meat and consumer health: A review[J]. Journal of the Science of Food and Agriculture, 2016, 96(1): 32-48. doi: 10.1002/jsfa.7360 [8] CHANG C Y, YU H Y, CHEN J J, et al. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China[J]. Environmental Monitoring and Assessment, 2014, 186(3): 1547-1560. doi: 10.1007/s10661-013-3472-0 [9] LIU X M, SONG Q J, TANG Y, et al. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis[J]. Science of the Total Environment, 2013, 463: 530-540. [10] MARTIN S, GRISWOLD W. Human health effects of heavy metals[J]. Environmental Science and Technology Briefs for Citizens, 2009, 15: 1-6. [11] DURUIBE J O, OGWUEGBU M O C, EGWURUGWU J N. Heavy metal pollution and human biotoxic effects[J]. International Journal of Physical Sciences, 2007, 2(5): 112-118. [12] FU J, ZHAO C P, LUO Y P, et al. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors[J]. Journal of Hazardous Materials, 2014, 270: 102-109. doi: 10.1016/j.jhazmat.2014.01.044 [13] HE J S, CHEN J P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools[J]. Bioresource Technology, 2014, 160: 67-78. doi: 10.1016/j.biortech.2014.01.068 [14] PING J F, WANG Y X, WU J, et al. Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk[J]. Food Chemistry, 2014, 151: 65-71. doi: 10.1016/j.foodchem.2013.11.026 [15] THONG Z, HAN G, CUI Y, et al. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal[J]. Environmental Science & Technology, 2014, 48(23): 13880-13887. [16] GUPTA V K, NAYAK A, AGARWAL S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects[J]. Environmental Engineering Research, 2015, 20(1): 1-18. doi: 10.4491/eer.2015.018 [17] LIM A P, ARIS A Z. A review on economically adsorbents on heavy metals removal in water and wastewater[J]. Reviews in Environmental Science and Biotechnology, 2014, 13(2): 163-181. doi: 10.1007/s11157-013-9330-2 [18] QU X, ALVAREZ P J J, LI Q. Applications of nanotechnology in water and wastewater treatment[J]. Water Research, 2013, 47(12): 3931-3946. doi: 10.1016/j.watres.2012.09.058 [19] RAY P Z, SHIPLEY H J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review[J]. RSC Advances, 2015, 5(38): 29885-29907. doi: 10.1039/C5RA02714D [20] TANHAEI B, AYATI A, LAHTINEN M, et al. Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl orange adsorption[J]. Chemical Engineering Journal, 2015, 259: 1-10. doi: 10.1016/j.cej.2014.07.109 [21] SHEN C C, CHEN C L, WEN T, et al. Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions[J]. Journal of Colloid and Interface Science, 2015, 456: 7-14. doi: 10.1016/j.jcis.2015.06.004 [22] MADADRANG C J, KIM H Y, GAO G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1186-1193. [23] WANG Y , LI H R, YAO J, et al. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C—H bond oxidation[J]. Chemical Science, 2011, 2(3): 446-450. doi: 10.1039/C0SC00475H [24] SHEN W Z, FAN W B. Nitrogen-containing porous carbons: Synthesis and application[J]. Journal of Materials Chemistry A, 2013, 1(4): 999-1013. doi: 10.1039/C2TA00028H [25] MAIYALAGAN T, VISWANATHAN B. Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes[J]. Materials Chemistry and Physics, 2005, 93(2/3): 291-295. [26] ROZLIVKOVA Z, TRCHOVÁ M, EXNEROVÁ M, et al. The carbonization of granular polyaniline to produce nitrogen-containing carbon[J]. Synthetic Metals, 2011, 161(11/12): 1122-1129. [27] LI Z, MA Z, VAN DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853. [28] RAO V V B, RAO S R M. Adsorption studies on treatment of textile dyeing industrial effluent by flyash[J]. Chemical Engineering Journal, 2006, 116(1): 77-84. doi: 10.1016/j.cej.2005.09.029 [29] BOJDYS M J, MÜLLER J O, ANTONIETTI M, et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride[J]. Chemistry, 2008, 14(27): 8177-8182. doi: 10.1002/chem.200800190 [30] RENGARAJ S, YEON J W, KIM Y, et al. Adsorption characteristics of Cu (II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis[J]. Journal of Hazardous Materials, 2007, 143(1/2): 469-477. [31] MONIER M, ABDEL-LATIF D A. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg (II), Cd (II) and Zn (II) ions from aqueous solutions[J]. Journal of Hazardous Materials, 2012, 209: 240-249. [32] DEMIRBAS A, PEHLIVAN E, GODE F, et al. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin[J]. Journal of Colloid and Interface Science, 2005, 282(1): 20-25. doi: 10.1016/j.jcis.2004.08.147 [33] ÜÇER A, UYANIK A, AYGÜN Ş F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon[J]. Separation and Purification Technology, 2006, 47(3): 113-118. doi: 10.1016/j.seppur.2005.06.012 [34] KULA I, UĞURLU M, KARAOĞLU H, et al. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation[J]. Bioresource Technology, 2008, 99(3): 492-501. doi: 10.1016/j.biortech.2007.01.015 [35] KIKUCHI Y, QIAN Q, MACHIDA M, et al. Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution[J]. Carbon, 2006, 44(2): 195-202. doi: 10.1016/j.carbon.2005.07.040 [36] DĄBROWSKI A, HUBICKI Z, PODKOŚCIELNY P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2): 91-106. doi: 10.1016/j.chemosphere.2004.03.006 [37] DENG X J, LÜ L L, LI H W, et al. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 923-930. [38] DONG F, WANG Z Y, SUN Y J, et al. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2013, 401: 70-79. doi: 10.1016/j.jcis.2013.03.034 [39] GARG V K, KUMAR R, GUPTA R. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: A case study of Prosopis cineraria[J]. Dyes and Pigments, 2004, 62(1): 1-10. doi: 10.1016/j.dyepig.2003.10.016 [40] ANBIA M, HAQSHENAS M. Adsorption studies of Pb(II) and Cu(II) ions on mesoporous carbon nitride functionalized with melamine-based dendrimer amine[J]. International Journal of Environmental Science and Technology, 2015, 12(8): 2649-2664. doi: 10.1007/s13762-015-0776-3 [41] ZHANG Y, ZHANG S, CHUNG T S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration[J]. Environmental Science & Technology, 2015, 49(16): 10235-10242. [42] HAN J P, XU G Y, DING B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(15): 5352-5357. doi: 10.1039/C3TA15271E [43] LI Y, HU Y, ZHAO Y, et al. An electrochemical avenue to green luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780. doi: 10.1002/adma.201003819 [44] SHINDE V P, PATIL P P. Investigation on role of monomer during electrochemical polymerization of aniline and its derivatives on low carbon steel by XPS[J]. Electrochimica Acta, 2012, 78: 483-494. doi: 10.1016/j.electacta.2012.06.042 [45] RASINES G, LAVELA P, MACÍAS C, et al. N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions[J]. Carbon, 2015, 83: 262-274. doi: 10.1016/j.carbon.2014.11.015 [46] LIN Z Y, SONG M K, DING Y, et al. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction[J]. Physical Chemistry Chemical Physics, 2012, 14(10): 3381-3387. doi: 10.1039/c2cp00032f [47] WU Z C, YU Y H, LIU X H. Characteristics of carbon nitride films synthesized by single source ion beam enhanced deposition system[J]. Applied Physics Letters, 1996, 68(9): 1291-1293. doi: 10.1063/1.115956 [48] ZHANG D Y, HAO Y, ZHENG L W, et al. Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance[J]. Journal of Materials Chemistry A, 2013, 26(1): 7584-7591. doi: 10.1039/c3ta11208j