-
锰是影响水质的一项金属指标,也是人体的一种必需微量元素,但是过量摄入则会对人体造成损害[1-4], 我国目前规定的饮用水锰含量限值[5]为0.1 mg·L−1,生态环境部门已将锰纳入地表水常规监测项目。松桃河流域地处长江重要支流——沅江的源头地带,流域内锰矿资源丰富,开发利用强度大。2000年以来,松桃河流域聚集了数量可观、规模较大的电解锰企业和锰渣库,特别是靠近松桃县县城的松桃河干流及其支流,分布了规模不等、生产经营情况不同的8家电解锰企业以及13座渣库。过于集中的产业分布,构成了较大的流域水环境风险,特别是电解锰渣不规范填埋处理,使得松桃河锰和氨氮等主要污染物浓度持续维持在较高水平。当前从流域尺度对锰污染的研究还较少[6-8],针对典型锰产业聚集区的流域锰污染的变化特征方面研究更鲜见有报道。摸清锰产业较聚集的松桃河流域的河流锰污染特征,可以为流域锰污染综合防治和水环境管理提供理论依据和决策支持。
本文以贵州省铜仁市松桃县内电解锰行业集聚的松桃河流域为研究区,聚焦流域地表水的锰污染问题,采用Spearman秩相关系数法研究松桃河锰的污染变化趋势,并用系统聚类法分析河流锰浓度的时空分布特征,综合时间和空间聚类结果进一步说明锰污染具体变化趋势。希望通过研究获得松桃河流域锰污染变化趋势、时空分布特征和重要影响因素,为保障松桃河出境断面稳定达标与水环境管理提供科学依据。
电解锰产业集聚区河流锰污染演变趋势和时空分布特征
Variation trend and spatio-temporal distribution of river manganese pollution in the cluster area of electrolytic manganese industry
-
摘要: 松桃河流域是我国锰产业最为集中的区域之一,资源开发和利用形成的污染严重。通过对松桃河电解锰产业集聚区流域2015—2019年的8个典型断面的总锰监测数据的分析,用秩相关系数法探究了河流锰污染总体变化趋势,并用系统聚类分析法分析了河流锰的时空分布特征,结合聚类结果对污染趋势做进一步分析。秩相关系数分析结果表明,近年来松桃河锰产业集聚区流域的上游水质较好且稳定,而中游污染严重,干流均值超过地表水环境质量标准值(0.1 mg·L−1)3—7倍,下游水质有所恢复,流域主要断面锰浓度总体呈下降趋势;时间聚类分析表明,流域内河流锰污染的年内分布主要特征为丰水期(雨季)和枯水期(旱季)浓度较高而平水期相对较低;空间聚类结果显示,流域内河流锰污染呈现出中游支流>中游干流>下游和上游的特征,两条支流道水河和老卜茨小溪对中游相应区段的贡献率较大,分别为41.2%和23.5%;聚类结果分析显示,降雨、渣库分布和渗漏、水文地质条件和支流汇入是影响流域内河流锰浓度的重要因素;结合聚类结果的污染趋势分析得出,中游和下游的水质在枯水期和丰水期的年度变幅较大,但在2017年以后呈现明显的下降趋势,结果反映了期间政府进行综合整治的效果和流域污染源排放的随机性。Abstract: Songtao River basin is one of the most concentrated areas of manganese industry in China, pollution caused by resource exploitation and utilization is serious. According to the total manganese monitoring data of 8 typical sections in Songtao River basin of the cluster area of electrolytic manganese industry from 2015 to 2019, we analyzed the general trend of river manganese pollution in Songtao River basin by rank correlation coefficient method, and the temporal and spatial distributions of manganese in rivers were analyzed by systematic clustering analysis, then combined with the clustering results to make a further analysis of the pollution trend. The rank correlation coefficient analysis results show that, in recent years , the water quality in the upper reaches of the basin was good and stable, but the midstream were seriously polluted, and the average concentration of manganese in the trunk stream was 3 to 7 times higher than the Environmental quality standard value for surface water(0.1 mg·L−1), the water quality had recovered downstream, the manganese concentration in the main section of the basin had showed a decreasing trend. Time clustering analysis showed that, the annual distribution of river manganese pollution in the basin was characterized by high concentration in wet season and dry season while low concentration in normal season. The spatial clustering results showed that, the river manganese pollution in the basin was characterized by the midstream tributary > the middle reaches > downstream and upstream, the two tributaries, Daoshui river and Laobuci stream, contributed more to the corresponding section of the middle reaches, the respective contribution rate was 41.2% and 23.5%. The analysis of the clustering results showed that rainfall, distribution and leakage of slag reservoir, hydrogeological conditions and inflow of tributaries were the important factors affecting the river manganese concentration in the basin. The pollution trend analysis combined with the clustering results showed that, the annual variations of water quality in the midstream and downstream were large in the dry seasons and wet seasons, but showed a significant downward trend after 2017, the results reflected the effect of comprehensive improvements by the government and the randomness of pollutant discharge in the basin.
-
表 1 松桃河流域研究区内电解锰渣库基本情况
Table 1. Basic information of electrolytic manganese slag dump in research area of Songtao River basin
渣库名称
Dump name所属流域
Catchment area渣库概况
Dump situation太丰1# 道水河上游 于2009年锰渣库规范化整治行动中封库。进行了表层覆膜、 初期坝加固工程、闭库覆土绿化工程、排水工程、 渗滤液收集池与应急事故池工程等整治工作。渣库底部未做防渗。 群兴1# 金泰2# 宇光1# 道水河下游 宇光2# 金瑞 1# 老卜茨小溪 汇丰 2# 三和 1# 镇江河 于2010年锰渣库规范化整治行动中封库。具体工程同2009年。渣库底部未做防渗。 汇丰 1# 松桃河干流 未进行封库,底部未做防渗。 表 2 流域内地下水处理设施情况
Table 2. Basic conditions of sewage treatment facilities in Songtao River basin
污水处理设施名称
Name of Sewage
treatment facilities所属流域
Catchment area污水处理主要工艺
Main treatment process处理效果
Treatment effect老卜茨水井
污水处理站道水河 主要采用化学絮凝沉淀工艺 处理后废水总锰总体上能达到污水综合排放标准要求,但大多都超过地表水环境质量标准0.1 mg·L−1,且处理效果不稳定,丰水期有井水溢出情况。 文山水井
污水处理站老卜茨小溪 采用“废水收集+絮凝沉降+压缩空气曝气+锰砂过滤”处理工艺 同上。 表 3 松桃河流域监测断面情况介绍
Table 3. Introduction of monitoring section in Songtao River basin
断面编号
Section number断面位置
Position of section周边状况
The surrounding conditions代表区域
Representative regionD1 松桃河上游道水河汇入前 无明显污染源。 上游干流 D2 道水河汇入后下游500 m 主要为支流道水河汇入。 中游干流 D3 老卜茨小溪汇入后下游200 m 主要为支流老卜茨小溪汇入。 中游干流 D4 上稿坪渡口 上游有1家锰企和1个渣场 中游干流 D5 国控出境断面木溪站 无明显污染源。 下游干流 Z1 道水河出口 支流内有3家锰企和7个渣场 中游支流 Z2 老卜茨小溪出口 支流内有1家锰企和3个渣场 中游支流 Z3 镇江河出口 支流内有1个渣场 下游支流 表 4 松桃河流域主要水质指标描述性统计(mg·L−1)
Table 4. Descriptive statistics of surface water quality indicators in Songtao River basin
水质指标
Indicators极小值
Minimum极大值
Maximum均值
Mean标准差
Standard deviationMn 0.01 27.5 0.698 1.57 NH3−N 0.025 153.3 2.43 11.1 pH 7.2 8.4 7.6 0.2 CODMn 1.10 3.50 1.730 0.523 TP 0.0100 0.900 0.068 0.129 F− 0.0700 0.350 0.172 0.053 Cu ND — — — Zn ND — — — As ND — — — Hg ND — — — Cd ND — — — Cr6+ 0.004 0.016 0.001 0.003 Pb ND — — — CN− ND — — — S2- ND — — — 注:“ND”表示未检出,“—”表示不存在,各指标最低检出限为:Cu(0.001 mg·L−1),Zn(0.05 mg·L−1),As(0.007 mg·L−1),Hg
(0.00005 mg·L−1),Cd(0.001 mg·L−1),Pb(0.01 mg·L−1),CN−(0.002 mg·L−1),CN−(0.005 mg·L−1).
Note: “ND” means not Not Detected, “—” means nonexistence, the minimum detection limit of each indicator is: Cu(0.001 mg·L−1), Zn(0.05 mg·L−1), As(0.007 mg·L−1), Hg(0.00005 mg·L−1), Cd(0.001 mg·L−1), Pb(0.01 mg·L−1), CN−(0.002 mg·L−1), CN−(0.005 mg·L−1).表 5 国内外有关研究中河流锰浓度参考值
Table 5. Reference values of river manganese concentration in domestic and foreign studies
编号
Serial number河流
Rivers国家
Countries浓度/(mg·L−1)
Concentration年份
Year参考文献编号
References number1 贵州松桃河 中国 0.698±6.76 2015—2019 — 2 福建九龙江 中国 0.097±0.133 2016—2017 [6] 3 湖南酉水流域 中国 0.295±0.634 2010—2014 [7] 4 恒河支流Ramganga河 印度 0.474±0.680 2018 [32] 5 台湾淡水河 中国 0.56±0.84 2006—2017 [37] 6 布努斯河 马来西亚 0.16±0.09 2016 [38] 7 Kalix河 瑞典 0.0094±0.078 1997 [39] 8 英格兰西北部15条河流 英国 0.017±0.010 1984—1985 [40] 表 6 松桃河流域研究断面近年锰浓度和rs值
Table 6. Manganese concentration and rs values in the main stream section of Songtao River basin in recent years
断面编号
Section number断面名称
Section name浓度/(mg·L−1)
Concentrationrs D1 松桃河上游道水河汇入前 0.0855±0.076 0.139 D2 道水河汇入后下游500m 0.630±8.27 −0.476 D3 老卜茨小溪汇入后下游200m 0.792±7.158 −0.6 D4 上稿坪渡口 0.394±2.586 −0.58 D5 国控出境断面木溪站 0.108±0.512 −0.414 Z1 道水河出口 1.733±4.377 −0.552 Z2 老卜茨小溪出口 1.419±6.821 −0.584 Z3 镇江河出口 0.101±0.839 −0.0149 表 7 各区段综合衰减系数计算
Table 7. The calculation of the comprehensive attenuation coefficient of each section
区段名称
Range name断面名称
Section name浓度/(mg·L−1)
Concentration流量/(m 3 ·s−1)
Flow流速u/(m·s−1)
Flow velocity
Cx/
(mg·L−1)△x/
mK/
h−1D1—D2段 起始断面D1 0.129 5.89 0.55 0.261 500 −2.330 汇入断面Z1 1.792 0.51 — 控制断面D2 0.471 6.32 0.54 D2—D3段 起始断面D2 0.471 6.32 0.54 0.563 200 −5.525 汇入断面Z2 1.778 0.48 — 控制断面D3 0.994 6.65 0.54 D3—D4段 起始断面D3 0.994 6.65 0.54 0.994 1500 1.812 控制断面D4 0.246 6.68 0.53 D4—D5段 起始断面D4 0.246 6.68 0.53 0.235 6300 0.359 汇入断面Z3 0.113 0.59 — 控制断面D5 0.0719 7.38 0.48 注:Cx表示模拟上游断面与支流汇入时的完全混合浓度,Cb为控制断面浓度,△x为支流汇入后到控制断面距离,K为该区段综合衰减系数,K=3600u/△x×ln(Cx/Cb).
Note: Cx represents the fully mixed concentration of the simulated upstream section and the tributary inflow; Cb represents the concentration of the control section; △x represents the distance from the tributary inflow to the control section; K represents the comprehensive attenuation coefficient of this section, K=3600u/△x×ln(Cx/Cb). -
[1] ZONI S, ALBINI E, LUCCHINI R. Neuropsychological testing for the assessment of manganese neurotoxicity: A review and a proposal [J]. American Journal of Industrial Medicine, 2007, 50(11): 812-830. doi: 10.1002/ajim.20518 [2] 丁宏伟, 李岩. 锰的神经毒性机制研究进展 [J]. 实用预防医学, 2016, 23(8): 1022-1025. doi: 10.3969/j.issn.1006-3110.2016.08.040 DING H W, LI Y. Advances in the mechanism of manganese-induced neurotoxicity [J]. Pract Prev Med, 2016, 23(8): 1022-1025(in Chinese). doi: 10.3969/j.issn.1006-3110.2016.08.040
[3] ROTH JA, LI Z Z, SRIDHAR S, et al. The effect of manganese on dopamine toxicity and dopamine transporter (DAT) in control and dat transfected hek cells [J]. Neurotoxicology, 2013, 35(3): 121-128. [4] 杨心乐, 王桂兰, 张忠诚. 锰与人体健康 [J]. 医学综述, 2006, 12(8): 1134-1136. YANG X L, WANG G L, ZHANG Z C. Manganese and Health of Human Body [J]. Medical Recapitulate, 2006, 12(8): 1134-1136(in Chinese).
[5] GB 3838—2002 地表水环境质量标准[S]. GB 3838—2002 Environmental quality standard value for surface water[S].
[6] 陈能汪, 王德利, 鲁婷, 等. 九龙江流域地表水锰的污染来源和迁移转化机制 [J]. 环境科学学报, 2018, 38(8): 2955-2964. CHEN N W, WANG D L, LU T, et al. Manganese pollution in the Jiulong River watershed: Sources and transformation [J]. Acta Scientiae Circumstantiae, 2018, 38(8): 2955-2964(in Chinese).
[7] 陈燕. “锰三角”对湖南湘西州境内酉水流域锰指标污染状况调查 [J]. 资源节约与环保, 2015, 10: 178-180. doi: 10.3969/j.issn.1673-2251.2015.06.146 CHEN Y. Investigation on manganese pollution in Youshui Basin of Xiangxi autonomous Prefecture, Hunan province by "Manganese Triangle" [J]. Resource Conservation and Environmental Protection, 2015, 10: 178-180(in Chinese). doi: 10.3969/j.issn.1673-2251.2015.06.146
[8] 黄波, 刘家春. 长江经济带的锰“暴露”—长江干流锰污染状况分析 [J]. 水利水电快报, 2015, 36(10): 33-35. doi: 10.3969/j.issn.1006-0081.2015.10.014 HUANG B, LIU J C. Manganese "exposed" in the Yangtze River Economic Belt—Analysis of manganese pollution in the Yangtze River trunk stream [J]. EWRHI, 2015, 36(10): 33-35(in Chinese). doi: 10.3969/j.issn.1006-0081.2015.10.014
[9] 周琦, 杜远生, 袁良军, 等. 贵州铜仁松桃锰矿国家整装勘查区地质找矿主要进展及潜力预测 [J]. 贵州地质, 2016, 33(4): 237-244. doi: 10.3969/j.issn.1000-5943.2016.04.001 ZHOU Q, DU Y S, YUAN L J, et al. Main progress and potential prediction of geological prospecting for manganese ore in national integrated exploration area of Songtao, Tongren, Guizhou province [J]. Guizhou Geology, 2016, 33(4): 237-244(in Chinese). doi: 10.3969/j.issn.1000-5943.2016.04.001
[10] 陈红亮. 新鲜电解锰渣和长期堆存渣的矿物成分和毒性特征的差异分析 [J]. 贵州师范大学学报(自然科学版), 2016, 34(2): 32-36. CHEN H L. Differences analysis of minerals compositions and toxicity characteristics between the fresh electrolytic manganese residue and the stockpiling residue [J]. Journal of Guizhou Normal University (Natural Sciences), 2016, 34(2): 32-36(in Chinese).
[11] DUAN N, FAN W, CHANGBO Z, et al. Analysis of pollution materials generated from electrolytic manganese industries in China [J]. Resources Conservation and Recycling, 2010, 54(8): 506-511. doi: 10.1016/j.resconrec.2009.10.007 [12] LI Z, PENG X, OUYANG Y. Conditions for leaching manganese from electrolytic manganese waste residue [J]. Jishou University Natural Science, 2006, 27(2): 110-113. [13] 罗乐, 降林华, 段宁. 电解锰废渣的浸出毒性及生石灰固化技术 [J]. 环境工程, 2017, 35(12): 139-143. LUO L, JIANG L H, DUAN N. A EMR solidification technology based on quicklime and leaching toxicity [J]. Environmental Engineering, 2017, 35(12): 139-143(in Chinese).
[14] ZHOU C B, WANG N F. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia [J]. Korean Journal of Chemical Engineering, 2013, 30(11): 2037-2042. doi: 10.1007/s11814-013-0159-8 [15] XIN B, CHEN B, DUAN N, et al. Extraction of manganese from electrolytic manganese residue by bioleaching [J]. Bioresource Technology, 2011, 102(2): 1683-1687. doi: 10.1016/j.biortech.2010.09.107 [16] LI H, ZHANG Z, TANG S, et al. Ultrasonically assisted acid extraction of manganese from slag [J]. Ultrasonics Sonochemistry, 2008, 15(4): 339-343. doi: 10.1016/j.ultsonch.2007.07.010 [17] ZHOU C, DU B, WANG N, et al. Preparation and strength property of autoclaved bricks from electrolytic manganese residue [J]. Journal of Cleaner Production, 2014, 84: 707-714. doi: 10.1016/j.jclepro.2014.01.052 [18] 杨盼, 卢路, 王继保, 等. 基于主成分分析的spearman秩相关系数法在长江干流水质分析中的应用 [J]. 环境工程, 2019, 37(8): 76-80. YANG P, LU L, WANG J B, et al. Analysis of water quality trend in the main stream of the Yangtze River based on principal component analysis [J]. Environmental Engineering, 2019, 37(8): 76-80(in Chinese).
[19] ZHANG P P, ZHANG X K. Analysis of evolution trend of water resources based on spearman and R/S methods: A case study of agricultural water source in Jinghui Irrigation Area [J]. Journal of Landscape Research, 2020, 12(3): 30-32. [20] 陈雨艳, 杨坪, 向秋实, 等. 岷江流域水质状况评价及变化趋势分析 [J]. 中国环境监测, 2015, 31(6): 53-57. doi: 10.3969/j.issn.1002-6002.2015.06.012 CHEN Y Y, YANG P, XIANG Q S, et al. Evaluation of the water quality in Minjiang River and analysis on its variation trend [J]. Environmental Monitoring in China, 2015, 31(6): 53-57(in Chinese). doi: 10.3969/j.issn.1002-6002.2015.06.012
[21] WANG W P, CHEN Y F, BECKER S, et al. Linear trend detection in serially dependent hydrometeorological data based on a variance correction spearman RHO method [J]. Water, 2015, 7(12): 7045-7065. doi: 10.3390/w7126673 [22] 陈欣佛, 柴元冰, 闵敏. 基Kendall检验法的湟水水质变化趋势分析 [J]. 人民黄河, 2019, 41(9): 97-101. doi: 10.3969/j.issn.1000-1379.2019.09.020 CHEN X F, CHAI Y B, MIN M. Analysis of variation trend of Huangshui water quality based on Kendall method [J]. Yellow River, 2019, 41(9): 97-101(in Chinese). doi: 10.3969/j.issn.1000-1379.2019.09.020
[23] KISI O, AY M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey [J]. Journal of Hydrology, 2014: 362-375. [24] HIRSCH R M, SLACK J R, SMITH R A. Techniques of trend analysis for monthly water quality data [J]. Water Resources Research, 1982, 18(1): 107-121. doi: 10.1029/WR018i001p00107 [25] 胡国华, 唐忠旺, 肖翔群. 季节性Kendall检验及其在三门峡水库水质趋势分析中的应用[J]. 地理与地理信息科学, 2004(3): 86-88. HU G H, TANG Z W, XIAO X Q. Trend analysis of water quality of Sanmenxia Reservoir of the Yellow River[J]. Geography and Geo-Information Science, 2004(3): 86-88(in Chinese).
[26] VAN B G, HUGHES J P. Nonparamertic tests for trend in waterquality [J]. Water Resources Research, 1984, 20(1): 127-136. doi: 10.1029/WR020i001p00127 [27] 邱瑀, 卢诚, 徐泽, 等. 湟水河流域水质时空变化特征及其污染源解析 [J]. 环境科学学报, 2017, 37(8): 2829-2837. QIU Y, LU C, XU Z, et al. Spatio-temporal variation characteristics and water pollution sources in the Huangshui River Basin [J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2829-2837(in Chinese).
[28] 徐华山, 徐宗学, 唐芳芳, 等. 漳卫南运河流域水质时空变化特征及其污染源识别 [J]. 环境科学, 2012, 33(2): 359-369. XU H S, XU Z X, TANG F F, et al. Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River basin [J]. Environmental Science, 2012, 33(2): 359-369(in Chinese).
[29] 王翠榆, 杨永辉, 周丰, 等. 沁河流域水体污染物时空分异特征及潜在污染源识别 [J]. 环境科学学报, 2012, 32(9): 2267-2278. WANG C Y, YANG Y H, ZHOU F, et al. Spatio-temporal characteristics and source identification of water pollutants in River Qinhe Basin [J]. Acta Scientiae Circumstantiae, 2012, 32(9): 2267-2278(in Chinese).
[30] 卜红梅, 刘文治, 张全发. 多元统计方法在金水河水质时空变化分析中的应用 [J]. 资源科学, 2009, 31(3): 429-434. doi: 10.3321/j.issn:1007-7588.2009.03.012 PU H M, LIU W Z, ZHANG Q F. The application of multivariate statistical method in the analysis of temporal and spatial variation of water quality in Jinshui River [J]. Resources Science, 2009, 31(3): 429-434(in Chinese). doi: 10.3321/j.issn:1007-7588.2009.03.012
[31] 汤云, 卢毅敏, 吴升. 闽江流域水质时空分布特征及污染源解析 [J]. 长江科学院院报, 2019, 36(8): 30-35,48. doi: 10.11988/ckyyb.20171452 TANG Y, LU Y M, WU S. Spatio-temporal distribution and source identification of water pollutants in Minjiang River basin [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 30-35,48(in Chinese). doi: 10.11988/ckyyb.20171452
[32] KHAN M Y, GANI K M, CHAKRAPANI G J. Spatial and temporal variations of physicochemical and heavy metal pollution in Ramganga River—a tributary of River Ganges, India [J]. Environmental Earth Sciences, 2017, 76(5): 1-13. [33] SHRESTHA S, KAZAMA. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan [J]. Environmental Modelling & Software, 2007, 22(4): 464-475. [34] PILLSBURY L A, BYRNE R H. Spatial and temporal chemicalvariability in the Hillsborough River system [J]. Marine Chemistry, 2007, 104: 4-16. doi: 10.1016/j.marchem.2006.12.005 [35] VAROL M, SEN B. Assessment of surface water quality using multivariate statistical techniques: A case study of Behrimaz Stream, Turkey [J]. Environmental Monitoring and Assessment, 2009, 159(1/4): 543-553. [36] VEGA M, PARDO R, BARRADO E. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis [J]. Water Research, 1998, 32(12): 3581-3592. doi: 10.1016/S0043-1354(98)00138-9 [37] LIU W C, KEN P J, LIU H M. Transport and distribution of manganese in tidal estuarine system in Taiwan [J]. Environmental Science and Pollution Research, 2020, 27: 510-531. doi: 10.1007/s11356-019-06797-1 [38] RAHIM A, KASMURI N. Assessment of water quality index and heavy metals in Sungai Bunus, Malaysia [J]. Journal of Physics:Conference Series, 2020, 2: 22-28. doi: 10.34306/conferenceseries.v2i11.330 [39] CHRISTER P, JOHAN I, KURT B. Geochemistry of manganese in the Kalix River, northern Sweden [J]. Pergamon, 1992, 56: 1485-1494. [40] DUNCAN L, WILLIAM D, COLIN W. Manganese chemistry in rivers and streams [J]. Pergamon, 1984, 48: 2107-2111. [41] 陆凤. 贵州典型锰矿区锰渣重金属污染特征及环境效应[D]. 贵阳, 贵州大学, 2018, 1 − 91. LU F. Characteristics of heavy metal pollution and environmental effects from manganese residues in typical manganese mining area in Guizhou[D]. Guiyang, Guizhou University, 2018,1 - 91.
[42] 蒋宗宏, 陆凤, 陈淼, 等. 贵州铜仁典型锰矿区土壤及蔬菜重金属污染特征及健康风险评价 [J]. 农业资源与环境学报, 2020, 37(2): 293-300. JIANG Z H, LU F, CHEN M, et al. Characteristics and health risk assessments of heavy metals in soils and vegetables in manganese mining areas in Tongren County, Guizhou Province, China [J]. Journal of Agricultural Resources and Environment, 2020, 37(2): 293-300(in Chinese).
[43] 杨育红, 沈万斌. 地表水非点源污染负荷计算方法探讨 [J]. 吉林大学学报(地球科学版), 2006, 36: 105-107. YANG Y H, SHEN W B. Preliminary study on estimating surface water non-point source pollution loads [J]. Journal of Jilin University(Earth Science Edition), 2006, 36: 105-107(in Chinese).
[44] 朱晓娟, 沈万斌, 高凯, 等. 吉林省松花江干流氨氮综合衰减系数分段研究 [J]. 科学技术与工程, 2013, 13(10): 2758-2761. doi: 10.3969/j.issn.1671-1815.2013.10.028 ZHU X J, SHEN W B, GAO K, et al. Sectional study on ammonia nitrogen comprehensive attenuation coefficient of Songhua River trunk stream in Jilin Province [J]. Science Technology and Engineering, 2013, 13(10): 2758-2761(in Chinese). doi: 10.3969/j.issn.1671-1815.2013.10.028