-
双酚A作为一种内分泌干扰物,是环境中存在最广的一类双酚类污染物,会使动物产生雌性早熟、性发育紊乱,具有胚胎毒性和致畸性,并且能够引起内分泌紊乱等[1-3]. 随着社会的快速发展,电子产品、塑料袋以及化妆品的不当处理,导致BPA在环境中日益累积,危及人们的用水安全[4]. 因此,探究如何有效去除水中BPA具有重要的研究意义.
高级氧化技术(AOPs)是目前水处理中最常见的方法之一. 过一硫酸盐(peroxymonosulfate,PMS)因其具有化学稳定性好、方便运输、易溶于水等优点而常被用作氧化剂[5]. 活化过一硫酸盐产生的硫酸根自由基(
${\rm{SO}}_4^{ \cdot - } $ ),相比于传统芬顿产生羟基自由基(·OH)拥有更高的氧化还原电位,且${\rm{SO}}_4^{ \cdot - } $ 半衰期更长(30—40 μs)、pH适应范围更广[6-7].PMS的活化方法被研究人员广泛探究,如热活化[8]、超声活化[9]以及紫外线辐射活化[10]等,但都存在着能量消耗过大的缺点.过渡金属离子作为活化PMS最有效的方法,能够有效降解污染物,如Co2+、Fe2+、Mn2+等[11-13],取得了相当大的进展.同样的,金属析出对环境造成二次污染的问题不可避免. 因此,研究人员把目光转向了非金属催化剂.活性炭、碳纳米管、多孔碳以及石墨烯等[14-17]碳材料均展现出一定的活化PMS的能力,但和过渡金属的优异性能相比,效率仍相差甚远. 因此,研究人员对其进行改性,O、S、N等元素的掺杂可以极大提高其催化性能. Gao等[18]通过一步热聚合法合成氧掺杂的氮化碳活化PMS降解BPA,在60 min内可以将其完全去除. Zhang等[19]直接煅烧三硫氰尿酸得到硫掺杂的氮化碳,在外加光源的协同作用下有效的活化PMS.Wang等[20]以尿素为前驱体制备出氮掺杂的氧化石墨烯,大大提高了对磺胺甲恶唑的降解效率. 研究表明,氮相比于其他非金属元素,对催化剂性能的提高更优,主要因为氮比碳的电负性更高,可以改变邻碳的电荷分布,并提高对PMS的吸附性能[21-22].
基于已有的研究成果[23],本研究拟采用尿素和2-萘甲醛为前驱体,通过一步热聚合法制备氮掺杂的碳材料(NCN-x). 以NCN-x为催化剂活化PMS降解双酚A,并探究了催化剂的添加量、PMS的添加量、反应温度以及初始pH值等对降解效率的影响;进一步通过捕获实验来判断反应体系中主要的活性物种.
基于席夫碱反应合成氮掺杂的碳活化PMS降解双酚A
Degradation of BPA by activating PMS over N-doped carbon synthesized based on Schiff base reaction
-
摘要: 基于石墨相氮化碳(g-C3N4)的热聚合形成过程和席夫碱反应,本文将尿素和2-萘甲醛作为前驱体,经一步热聚合反应制备了氮掺杂的碳材料(NCN-x),并以其作为催化剂活化过一硫酸盐(PMS)来降解双酚A(BPA). 在催化剂特性研究部分,利用SEM、XRD、FTIR以及XPS对其表面形貌、结构与元素组成进行分析. 结果表明,2-萘甲醛的加入使NCN-x催化剂的表面更加粗糙,提供更多活性位点;由XRD和FTIR的图谱可知,对应于g-C3N4 中(100)晶面的峰强随着2-萘甲醛加入比例的增加而逐渐降低,表明NCN-x中的七嗪单元逐渐被破坏;由XPS表征结果可知,NCN-3中石墨N含量是g-C3N4中的20倍左右,使邻近碳原子带正电,并激活了碳原子上的π电子,提高对PMS的吸附性能. 通过研究催化剂的加入量、PMS添加量、反应温度和初始pH值等对BPA降解的影响,发现催化剂和PMS的添加量均与降解效率呈正相关,催化剂的活化能为36.2 kJ·mol−1;初始pH值对反应体系的影响不大,说明催化剂有较强的抗pH波动干扰的能力. 自由基猝灭实验表明,单线态氧是主要活性物种,且水中共存的氯离子对BPA降解的影响并不明显.Abstract: Based on the thermal polymerization formation process of graphitic carbon nitride (g-C3N4) and the Schiff base reaction, urea and 2-naphthaldehyde were used as precursors to prepare N-doped carbon catalysts (NCN-x). The obtained catalysts were used to activate peroxymonosulfate (PMS) to degradate bisphenol A (BPA). The characterization methods of SEM, XRD, FTIR and XPS were used to analyze the surface morphology, structure and elements composition of catalysts. The acquired results showed that the addition of 2-naphthaldehyde maked the surface of the NCN-x catalysts rougher, providing more activation sites. The analysis of the XRD and FTIR spectra showed that the (100) facet peak intensity of g-C3N4 gradually decreased with the increase of the ratio of 2-naphthaldehyde during the preparation process of NCN-x, indicating that the heptazine unit was gradually destroyed. The results of XPS characterization indicated that the graphite N content of NCN-3 was about 20 times of that in g-C3N4. The graphite N made the adjacent carbon atoms positively charged and π electrons on the carbon atoms were activated to improve the adsorption performance of PMS. Further study concerning the effect of catalyst concentration, PMS concentration, reaction temperature and initial pH on the degradation of BPA indicated that the addition amount of the catalyst and PMS was positively related to the degradation efficiency of BPA. The Ea of NCN-3 was calculated to be 36.2 kJ·mol−1, and the initial pH had little effect on the reaction system, indicating that NCN-3 had a strong ability to resist the interference of pH fluctuations. Free radical quenching experiments indicated that the main active species was singlet oxygen, and the coexisting Cl− in water had little effect on the degradation of BPA.
-
Key words:
- N-doped carbon /
- peroxymonosulfate /
- Bisphenol A /
- singlet oxygen
-
表 1 主要实验试剂
Table 1. Main experimental reagents
药品 Reagent 纯度 Purity 生产厂家 Manufacturer 尿素 分析纯 国药集团化学试剂有限公司 双酚A 99.0% 上海麦克林生化科技有限公司 甲醇 色谱级 默克股份两合公司 过硫酸氢钾 ≥47% 上海阿拉丁生化科技股份有限公司 叔丁醇 ≥99.5% 上海阿拉丁生化科技股份有限公司 L-组氨酸 ≥99% 上海阿拉丁生化科技股份有限公司 表 2 主要实验仪器
Table 2. Main experimental equipment
仪器 Instrument 型号 Model 生产厂家 Manufacturer 数显恒温磁力搅拌器 HJ-4A 江苏省金坛市荣华仪器制造有限公司 pH计 PB-10 德国赛多利斯仪器有限公司 马弗炉 YFX7/10Q-GC 上海意丰电炉有限公司 高效液相色谱仪 e2685 Waters公司 超纯水发生器 EPED-20TJ 南京易谱达科技发展有限公司 表 3 催化剂中不同类型的N的含量
Table 3. The content of different types of N in the catalysts
吡啶 N 吡咯 N 石墨 N NOx g-C3N4 65.6% 25.3% 1.0% 8.1% NCN-3 42.4% 21.7% 22.7% 13.2% 表 4 N原子在催化剂中的浓度
Table 4. The concentration of N atoms in catalysts
g-C3N4 NCN-1 NCN-2 NCN-3 NCN-4 NCN-5 N/% 35.8 43.0 40.4 27.3 25.7 24.2 表 5 猝灭剂与自由基的反应速率常数
Table 5. The rate constant of the reaction between quencher agent and free radicals
捕获剂 Capture reagent 活性物种 Active species 反应速率常数 Reaction rate constant 甲醇 ${\rm{SO}}_4^{ \cdot - } $ 3.2×106 L·mol−1·s−1 ·OH 9.7×108 L·mol−1·s−1 叔丁醇 ·OH 3.8×108–7.6×108 L·mol−1·s−1 L-组氨酸 1O2 3.2×107 L·mol−1·s−1 -
[1] CHEN D, KANNAN K, TAN H L, et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review [J]. Environmental Science & Technology, 2016, 50(11): 5438-5453. [2] VANDENBERGL N, HAUSER R, MARCUS M, et al. Human exposure to bisphenol A (BPA) [J]. Reproductive Toxicology, 2007, 24(2): 139-177. doi: 10.1016/j.reprotox.2007.07.010 [3] 邓茂先, 吴德生, 詹立. 环境雌激素双酚A的生殖毒理研究 [J]. 环境与健康杂志, 2001, 18(3): 134-136,150. doi: 10.3969/j.issn.1001-5914.2001.03.002 DENG M X, WU D S, ZHAN L. Study on mechanism of reproduction toxicity of to estrogic Bisphenol-A related to environment [J]. Journal of Environment and Health, 2001, 18(3): 134-136,150(in Chinese). doi: 10.3969/j.issn.1001-5914.2001.03.002
[4] DU J K, BAO J G, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A [J]. Journal of Hazardous Materials, 2016, 320: 150-159. doi: 10.1016/j.jhazmat.2016.08.021 [5] LIANG C J, WANG Z, MOHANTY N, et al. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃ [J]. Science of The Total Environment, 2006, 370(2): 271-277. [6] GONG Y, ZHAO X, ZHANG H, et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation [J]. Applied Catalysis B-environmental, 2018, 233: 35-45. doi: 10.1016/j.apcatb.2018.03.077 [7] LI X N, WANG Z H, ZHANG B, et al. FexCo3-xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate [J]. Applied Catalysis B-environmental, 2016, 181(181): 788-799. [8] JI Y F, FAN Y, LIU K, et al. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds [J]. Water Research, 2015, 87: 1-9. doi: 10.1016/j.watres.2015.09.005 [9] LIN Y T, LIANG C J, CHEN J H, et al. Feasibility study of ultraviolet activated persulfate oxidation of phenol [J]. Chemosphere, 2011, 82(8): 1168-1172. doi: 10.1016/j.chemosphere.2010.12.027 [10] LUO C W, MA J, JIANG J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5− and UV/S2O82− [J]. Water Research, 2015, 80: 99-108. doi: 10.1016/j.watres.2015.05.019 [11] HU L X, YANG X P, DANG S T, et al. An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water [J]. Applied Catalysis B-environmental, 2011, 102(1): 19-26. [12] ZOU J, MA J, CHEN L W, et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine [J]. Environmental Science & Technology, 2013, 47(20): 11685-11691. [13] FAN J H, QIN H H, JIANG S M, et al. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen [J]. Chemical Engineering Journal, 2019, 359: 723-732. doi: 10.1016/j.cej.2018.11.165 [14] ZHANG J, SHAO X T, SHI C, et al. Decolorization of acid orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon [J]. Chemical Engineering Journal, 2013, 232: 259-265. doi: 10.1016/j.cej.2013.07.108 [15] CHEN J B, ZHANG L M, HUANG T Y, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: Radical versus non-radical mechanism [J]. Journal of Hazardous Materials, 2016, 320: 571-580. doi: 10.1016/j.jhazmat.2016.07.038 [16] WANG G, CHEN S, QUAN X, et al. Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants [J]. Carbon, 2017, 115: 730-739. doi: 10.1016/j.carbon.2017.01.060 [17] DUAN X G, SUN H Q, AO Z M, et al. Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation [J]. Carbon, 2016, 107: 371-378. doi: 10.1016/j.carbon.2016.06.016 [18] GAO Y W, ZHU Y, LYU L, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation [J]. Environmental Science & Technology, 2018, 52(24): 14371-14380. [19] LIN K A, ZHANG Z. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst [J]. Chemical Engineering Journal, 2017, 313: 1320-1327. doi: 10.1016/j.cej.2016.11.025 [20] WANG S Z, XU L J, WANG J L, et al. Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole [J]. Chemical Engineering Journal, 2019, 375: 122041. doi: 10.1016/j.cej.2019.122041 [21] QU L T, LIU Y, BAEK J, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells [J]. ACS Nano, 2010, 4(3): 1321-1326. doi: 10.1021/nn901850u [22] PARAKNOWTTSCH J P, THOMAS A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications [J]. Energy and Environmental Science, 2013, 6(10): 2839-2855. doi: 10.1039/c3ee41444b [23] XUE W L, CAO S H, LIU R, et al. Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A [J]. Chemosphere, 2020, 248: 126053. doi: 10.1016/j.chemosphere.2020.126053 [24] HO W K, ZHANG Z Z, LIN W, et al. Copolymerization with 2, 4, 6-Triaminopyrimidine for the Rolling-up the Layer Structure, Tunable Electronic Properties, and Photocatalysis of g-C3N4 [J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5497-5505. [25] ZHAO Y H, LIU M X, DENG X X, et al. Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode [J]. Electrochimica Acta, 2015, 153(153): 448-455. [26] CHIDHAMBARAM N, RAVICHANDRAN K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications [J]. Materials Letters, 2017, 207: 44-48. doi: 10.1016/j.matlet.2017.07.040 [27] CHEN H, YAO J H, QIU P X, et al. Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity [J]. Materials Research Bulletin, 2017, 91: 42-48. doi: 10.1016/j.materresbull.2017.02.042 [28] GU J Y, CHEN H, JIANG F, et al. Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride [J]. Journal of Colloid and Interface Science, 2019, 540: 97-106. doi: 10.1016/j.jcis.2019.01.023 [29] QIU P X, CHEN H, JIANG F, et al. Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity [J]. RSC Advances, 2014, 4(75): 39969-39977. doi: 10.1039/C4RA06451H [30] DONG G H, YANG L P, WANG F, et al. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides [J]. ACS Catalysis, 2016, 6(10): 6511-6519. doi: 10.1021/acscatal.6b01657 [31] QIU P X, XU C M, CHEN H, et al. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity [J]. Applied Catalysis B-environmental, 2017, 206: 319-327. doi: 10.1016/j.apcatb.2017.01.058 [32] CAO S H, ZHOU N, GAO F H, et al. All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation [J]. Applied Catalysis B-environmental, 2017, 218: 600-610. doi: 10.1016/j.apcatb.2017.07.013 [33] OH W, VEKSHA A, CHEN X, et al. Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation [J]. Chemical Engineering Journal, 2019, 374: 947-957. doi: 10.1016/j.cej.2019.06.001 [34] MA W J, WANG N, FAN Y N, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate [J]. Chemical Engineering Journal, 2018, 336: 721-731. doi: 10.1016/j.cej.2017.11.164 [35] LIU C, CHEN L W, DING D H, et al. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor [J]. Applied Catalysis B-environmental, 2019, 254: 312-320. doi: 10.1016/j.apcatb.2019.05.014 [36] LUO R, LIU C, LI J S, et al. Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate [J]. Journal of Hazardous Materials, 2017, 329: 92-101. doi: 10.1016/j.jhazmat.2017.01.032 [37] LUO R, LI M Q, WANG C H, et al. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition [J]. Water Research, 2019, 148: 416-424. doi: 10.1016/j.watres.2018.10.087 [38] HU L M, ZHANG G S, WANG Q, et al. Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation [J]. Chemical Engineering Journal, 2017, 326: 1095-1104. doi: 10.1016/j.cej.2017.05.168 [39] WANG Y B, LIU M, ZHAO X, et al. Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon [J]. Carbon, 2018, 135: 238-247. doi: 10.1016/j.carbon.2018.01.106 [40] BOKARE A D, CHOI W Y. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054 [41] PAN X X, CHEN J, WU N N, et al. Degradation of aqueous 2, 4, 4'-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products [J]. Water Research, 2018, 143: 176-187. doi: 10.1016/j.watres.2018.06.038 [42] REN W J, GAO J K, LEI C, et al. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants [J]. Chemical Engineering Journal, 2018, 349: 766-774. doi: 10.1016/j.cej.2018.05.143 [43] YIN R L, GUO W Q, WANG H Z, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism [J]. Chemical Engineering Journal, 2019, 357: 589-599. doi: 10.1016/j.cej.2018.09.184 [44] HU W R, TONG W H, LI Y L, et al. Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 388. [45] HOU J F, YANG S S, WAN H Q, et al. Highly effective catalytic peroxymonosulfate activation on N-doped mesoporous carbon for o -phenylphenol degradation [J]. Chemosphere, 2018, 197: 485-493. doi: 10.1016/j.chemosphere.2018.01.031 [46] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals [J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023 [47] REN W, NIE G, ZHOU P, et al. The Intrinsic Nature of Persulfate Activation and N-Doping in Carbocatalysis [J]. Environmental Science and Technology, 2020, 54(10): 6438-6447. doi: 10.1021/acs.est.0c01161 [48] WANG N, MA W J, REN Z Q, et al. Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants [J]. Journal of Materials Chemistry, 2018, 6(3): 884-895. doi: 10.1039/C7TA08472B [49] CHEN X, OH W D, HU Z T, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J]. Applied Catalysis B: Environmental, 2018, 225: 243-257.