-
微塑料是粒径小于5 mm的塑料碎片(microplastics, MPs),是环境中一类新兴污染物。已有大量研究证实微塑料广泛存在于海洋、河流、湖泊、海滩、河口等各种水体、农田土壤中,成为全球关注的环境问题[1–4]。已检测到的微塑料主要类型有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚酰胺(PA)和聚对苯二甲酸乙二醇酯(PET)[1,5–14]。微塑料粒径小、比表面积大且疏水性强,可吸附有毒有害物质,成为有毒化学物质在环境中迁移的载体,从而改变两者的环境行为和生物效应[15]。已有大量的研究表明微塑料与污染物可长期共存,作为多环芳烃(PAHs)、多氯联苯(PCBs)、六氯环己烷(HCHs)、滴滴涕(DDTs)等有机污染物的载体[1,5–14]。不少文献也研究了微塑料与有机污染物的吸附机理及其影响因素,例如微塑料颗粒大小、微塑料和有机物结构、环境因素都会影响其吸附行为[6–8,16–22]。同时,微塑料与污染物的联合毒性效应也被广泛关注[6,23–29]。例如,微塑料可以作为载体促进生物体对有机污染物吸收,造成生物体内毒性物质增高从而加剧了组织损伤以及机能减弱[23,24]。微塑料也可以减少生物体对污染物的吸附以及富集率并通过竞争吸附降低污染物的生物利用度以及毒性[27-28,30]。
因此,本文就国内外微塑料与有机污染物的相互作用及毒性效应的研究进展进行综述,重点分析不同介质中微塑料与有机污染物的共存水平、吸附机理、影响因素以及联合毒性效应等,并对其今后的相关研究发展趋势进行了展望,以期为微塑料与有机污染物共存及作用机制的环境风险评估及污染控制提供参考[17]。
环境微塑料与有机污染物的相互作用及联合毒性效应研究进展
The interaction and combined toxic effects of microplastics and organic pollutants in the environment:A review
-
摘要: 环境微塑料可吸附有机污染物,并与有机污染物进行相互作用从而改变其毒性效应,增加微塑料的治理难度。本文就全球范围内微塑料与有机污染物的相互作用及毒性效应的研究进展进行综述,分析不同介质中微塑料与有机污染物的共存水平、吸附机理、影响因素以及联合毒性效应等。研究表明,微塑料可作为多环芳烃(PAHs)、多氯联苯(PCBs)、六氯环己烷(HCHs)、滴滴涕(DDTs)等有机污染物的载体,并且吸附的有机污染物浓度在不同区域之间差异较大,在拥有大量工业、港口和农业活动的地区浓度较高。微塑料与有机污染物的共存机制主要为疏水分配以及静电相互作用。吸附过程受微塑料粒径、结构、微塑料老化程度、有机物结构(官能团结构、极性、聚合物状态)以及吸附介质(pH值、温度、盐度等)的影响。微塑料与污染物联合作用可增加生物体内有毒有害物质的浓度,并影响生物生理功能从而增加毒性作用;也可以通过降低环境中污染物的自由态,减少污染物的富集率以及利用度从而使毒性效应减弱。最后,本文提出了现有研究的不足并对今后的相关研究发展趋势进行了展望。Abstract: Microplastics in the environment can absorb and interact with organic pollutants to change their toxic effects and increase the difficulty of microplastics treatment. This article reviews the research progress of the interaction between microplastics and organic pollutants and their toxic effects on a global scale, and analyze the coexistence level, adsorption mechanism, influencing factors and joint toxicity effects of microplastics and organic pollutants in different media. Studies have shown that microplastics can be used as carriers for organic pollutants in polycyclic aromatic hydrocarbons (PAHs), Polychlorinated biphenyls (PCBs), Hexachlorocyclohexane (HCHs), DDTs, and the concentration of adsorbed organic pollutants varies greatly between different regions, and the concentration is higher in regions with a large number of industries, ports and agricultural activities. The coexistence mechanism of microplastics and organic pollutants is mainly hydrophobic distribution and electrostatic interaction. The adsorption process is affected by the size and structure of microplastics, aging degree of microplastics, the structure of pollutants (functional group structure, polarity, polymer state), and the adsorption medium (pH, temperature, salinity, etc.). In addition, the combined effect of microplastics and pollutants can increase the concentration of toxic substances in organisms and affect biological functions to increase toxicity. It is also possible to reduce the free state of pollutants in the environment and reduce the enrichment rate and utilization of pollutants to reduce the toxic effect. Finally, this article puts forward the shortcomings of the existing research and prospects the development trend of related research in the future.
-
Key words:
- Microplastics /
- organic pollutants /
- mechanism of action /
- influencing factors /
- combined toxicity
-
图 2 在实验室研究中微塑料类型和微塑料上的有机物种类分布
Figure 2. Microplastics types and pollutants on microplastics (the size of each pie area represents the ratio of literature on the sorption behaviors of different types of microplastics and the size of the bar graph represents the ratio of literature on the sorption behaviors of different types of organic pollutants).
表 1 微塑料与有机污染物的复合污染及联合毒性作用
Table 1. Compound pollution and joint toxicity of microplastics and pollutants
联合作用
Joint interaction介质
Medium微塑料类型
Microplastics生物种类
Biological species有机污染物
Organic Pollutants联合作用影响
Combined effect参考文献
References协同作用 海水 PE、PS 紫贻贝 芘 增加芘的吸收,影响免疫反应、
遗传毒性作用和神经毒性反应[25] 海水 低密度PE 欧洲鲈鱼 卤代污染物 增加生物蓄积以及毒性作用
(肝脏代谢,免疫系统,氧化应激)[68] M4培养基 纳米级塑料
(NPs)大型蚤
(Daphnia magna)菲 增强生物蓄积和毒性作用,
影响其发育和繁殖能力[24] 人工淡水 纳米级塑料
(NPs)斑马鱼
(Danio rerio)双酚A
(BPA)增强内脏和头部的BPA积累,
引起神经毒性[70] 海洋沉淀物 PS 沙蠋
(Arenicola marina)PCBs 增加生物蓄积 [71] 海水 PS 泥蚶
(Tegillarca granosa)苯并(a)芘(BaP)、雌二醇(E2) 增加生物蓄积,降低血细胞的吞噬能力
以及对异物的识别、吞噬和降解能力[72] 海洋沉淀物 PVC 沙蠋
(Arenicola marina)壬基酚、菲、三氯生、PBDE-47 降低生存率和进食,
损害免疫系统和抗氧化酶系统[23] 海水 PE 汤氏纺锤水蚤
(Acartia tonsa)CPF(氯吡硫磷) 增加毒性,影响存活率、
产卵率、进食以及孵化率[26] 人造海水 PE 斑马鱼
(Danio rerio)芘 降低乙酰胆碱酯酶、异柠檬酸
脱氢酶的活性,影响生理活动[74] 拮抗作用 人造海水 PE、PS、PVC、PVC800 骨条藻
(Skeletonema costatum)三氯生
(TCS)降低毒性 [27] 超纯水 PS 斑马鱼幼体
(Danio rerio)17α-乙炔雌二醇(EE2) 缓解运动机能的减退 [28] 人造海水 PE 虾虎鱼吸虫幼体 芘 延缓芘诱导的死亡率 [76] 无菌BG-11培养基 PE, PA, PS 小球藻 壬基酚(NP) 减轻NP对藻类生长、
PSII活性、酶活性的抑制作用[75] 人造水 PVC 斑马鱼幼体
(Danio rerio)菲、EE2 降低污染物的生物利用度 [29] 去离子水和BG11培养基 NPS-NH2 铜绿微囊藻
(Microcystis aeruginosa)草甘膦 减轻草甘膦对铜绿假单胞菌
的抑制作用,降低毒性作用[76] 农业土壤 PE, PS 蚯蚓
(Eisenia fetida)PAHs、PCBs 降低生物利用度降和毒性 [30] -
[1] GUO X, WANG J L. The chemical behaviors of microplastics in marine environment : A review [J]. Marine pollution bulletin, 2019, 142: 1-14. doi: 10.1016/j.marpolbul.2019.03.019 [2] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018, 242: 855-862. doi: 10.1016/j.envpol.2018.07.051 [3] BAI Y C, ZANG C Y, GU M J, et al. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils [J]. Science of the Total Environment, 2017, 578: 47-55. doi: 10.1016/j.scitotenv.2016.06.083 [4] URBANIAK M, WYRWICKA A, TOLOCZKO W, et al. The effect of sewage sludge application on soil properties and willow ( Salix sp. ) cultivation [J]. Science of the Total Environment, 2017, 586: 66-75. doi: 10.1016/j.scitotenv.2017.02.012 [5] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris [J]. Environmental Science & Technology, 2013, 47(3): 1646-1654. [6] 张哿, 邹亚丹, 徐擎擎, 等. 微塑料与水中污染物的联合作用研究进展 [J]. 海洋湖沼通报, 2019(2): 59-69. ZHANG G, ZOU Y D, XU Q Q, et al. Proceedings of joint effect of microplastics and pollutants in water [J]. Transactions of Oceanology and Limnology, 2019(2): 59-69(in Chinese).
[7] WANG F, SHIH K M, LI X Y. Chemosphere The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide ( FOSA ) on microplastics [J]. Chemosphere, 2015, 119: 841-847. doi: 10.1016/j.chemosphere.2014.08.047 [8] WANG J, LIU X H, LI Y, et al. Microplastics as contaminants in the soil environment: A mini-review [J]. Science of The Total Environment, 2019, 691: 848-857. doi: 10.1016/j.scitotenv.2019.07.209 [9] HIRAI H, TAKADA H, OGATA Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches [J]. Marine Pollution Bulletin, 2011, 62(8): 1683-1692. doi: 10.1016/j.marpolbul.2011.06.004 [10] YEO B G, TAKADA H, YAMASHITA R, et al. PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan [J]. Marine Pollution Bulletin, 2020, 151: 110806. doi: 10.1016/j.marpolbul.2019.110806 [11] ANTUNES J C, FRIAS J G L, MICAELO A C, et al. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants [J]. Estuarine, Coastal and Shelf Science, 2013, 130: 62-69. doi: 10.1016/j.ecss.2013.06.016 [12] CAMACHO M, HERRERA A, GÓMEZ M, et al. Organic pollutants in marine plastic debris from Canary Islands beaches [J]. Science of the Total Environment, 2019, 662: 22-31. doi: 10.1016/j.scitotenv.2018.12.422 [13] KARAPANAGIOTI H K, ENDO S, OGATA Y, et al. Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece [J]. Marine Pollution Bulletin, 2011, 62(2): 312-317. doi: 10.1016/j.marpolbul.2010.10.009 [14] RYAN P G, BOUWMAN H, MOLONEY C L, et al. Long-term decreases in persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets [J]. Marine Pollution Bulletin, 2012, 64(12): 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013 [15] VERLA A W, ENYOH C E, VERLA E N, et al. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication [J]. SN Applied Sciences, 2019, 1(11): 1-30. doi: 10.1007/s42452-019-1352-0 [16] WANG J, LIU X H, LIU G N, et al. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene [J]. Ecotoxicology and Environmental Safety, 2019, 173: 331-338. doi: 10.1016/j.ecoenv.2019.02.037 [17] WANG Z, CHEN M L, ZHANG L W, et al. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China [J]. Science of the Total Environment, 2018, 628/629: 1617-1626. [18] GONG W W, JIANG M Y, HAN P, et al. Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics [J]. Environmental Pollution, 2019, 254: 112927. doi: 10.1016/j.envpol.2019.07.095 [19] ZHAN Z W, WANG J D, PENG J P, et al. Sorption of 3, 3′, 4, 4′-tetrachlorobiphenyl by microplastics: A case study of polypropylene [J]. Marine Pollution Bulletin, 2016, 110(1): 559-563. doi: 10.1016/j.marpolbul.2016.05.036 [20] XU B L, LIU F, BROOKES P C, et al. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 131: 191-196. doi: 10.1016/j.marpolbul.2018.04.027 [21] ZHANG X J, ZHENG M G, WANG L, et al. Sorption of three synthetic musks by microplastics [J]. Marine Pollution Bulletin, 2018, 126: 606-609. doi: 10.1016/j.marpolbul.2017.09.025 [22] ZHANG X J, ZHENG M G, YIN X C, et al. Sorption of 3, 6-dibromocarbazole and 1, 3, 6, 8-tetrabromocarbazole by microplastics [J]. Marine Pollution Bulletin, 2019, 138: 458-463. doi: 10.1016/j.marpolbul.2018.11.055 [23] BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity [J]. Current Biology, 2013, 23(23): 2388-2392. doi: 10.1016/j.cub.2013.10.012 [24] MA Y N, HUANG A N, CAO S Q, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water [J]. Environmental Pollution, 2016, 219: 166-173. doi: 10.1016/j.envpol.2016.10.061 [25] AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels [J]. Environmental Pollution, 2015, 198: 211-222. doi: 10.1016/j.envpol.2014.12.021 [26] BELLAS J, GIL I. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa [J]. Environmental Pollution, 2020, 260: 114059. doi: 10.1016/j.envpol.2020.114059 [27] ZHU Z L, WANG S C, ZHAO F F, et al. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum [J]. Environmental Pollution, 2019, 246: 509-517. doi: 10.1016/j.envpol.2018.12.044 [28] CHEN Q Q, GUNDLACH M, YANG S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity [J]. Science of the total environment, 2017, 584: 1022-1031. [29] SLEIGHT V A, BAKIR A, THOMPSON R C, et al. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish [J]. Marine Pollution Bulletin, 2017, 116(1/2): 291-297. [30] WANG J, COFFIN S, SUN C L, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil [J]. Environmental Pollution, 2019, 249: 776-784. doi: 10.1016/j.envpol.2019.03.102 [31] van A, ROCHMAN C M, FLORES E M, et al. Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California [J]. Chemosphere, 2012, 86(3): 258-263. doi: 10.1016/j.chemosphere.2011.09.039 [32] FISNER M, TANIGUCHI S, MOREIRA F, et al. Polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: Variability in the concentration and composition at different sediment depths in a sandy beach [J]. Marine Pollution Bulletin, 2013, 70(1/2): 219-226. [33] HOSODA J, OFOSU-ANIM J, SABI E B, et al. Monitoring of organic micropollutants in Ghana by combination of pellet watch with sediment analysis: E-waste as a source of PCBs [J]. Marine Pollution Bulletin, 2014, 86(1/2): 575-581. [34] TANIGUCHI S, COLABUONO F I, DIAS P S, et al. Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil [J]. Marine pollution bulletin, 2016, 106(1/2): 87-94. [35] GORMAN D, MOREIRA F T, TURRA A, et al. Organic contamination of beached plastic pellets in the South Atlantic: Risk assessments can benefit by considering spatial gradients [J]. Chemosphere, 2019, 223: 608-615. doi: 10.1016/j.chemosphere.2019.02.094 [36] GAUQUIE J, DEVRIESE L, ROBBENS J, et al. A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris [J]. Chemosphere, 2015, 138: 348-356. doi: 10.1016/j.chemosphere.2015.06.029 [37] ZHANG H B, ZHOU Q, XIE Z Y, et al. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in North China [J]. Science of the Total Environment, 2018, 616/617: 1505-1512. [38] TANG G W, LIU M Y, ZHOU Q, et al. Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts [J]. Science of the Total Environment, 2018, 634: 811-820. doi: 10.1016/j.scitotenv.2018.03.336 [39] ZHANG W W, MA X D, ZHANG Z F, et al. Persistent organic pollutants carried on plastic resin pellets from two beaches in China [J]. Marine Pollution Bulletin, 2015, 99(1/2): 28-34. [40] GAO F L, LI J X, SUN C J, et al. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment [J]. Marine Pollution Bulletin, 2019, 144: 61-67. doi: 10.1016/j.marpolbul.2019.04.039 [41] SHI J C, SANGANYADO E, WANG L S, et al. Organic pollutants in sedimentary microplastics from eastern Guangdong: Spatial distribution and source identification [J]. Ecotoxicology and Environmental Safety, 2020, 193: 110356. doi: 10.1016/j.ecoenv.2020.110356 [42] LO H S, WONG C Y, TAM N F Y, et al. Spatial distribution and source identification of hydrophobic organic compounds (HOCs) on sedimentary microplastic in Hong Kong [J]. Chemosphere, 2019, 219: 418-426. doi: 10.1016/j.chemosphere.2018.12.032 [43] TAN X L, YU X B, CAI L Q, et al. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China [J]. Chemosphere, 2019, 221: 834-840. doi: 10.1016/j.chemosphere.2019.01.022 [44] FRASER M A, CHEN L, ASHAR M, et al. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110536. doi: 10.1016/j.ecoenv.2020.110536 [45] LU X M, LU P Z, LIU X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. Science of The Total Environment, 2020, 709: 136276. doi: 10.1016/j.scitotenv.2019.136276 [46] WU X W, LIU P, HUANG H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations [J]. Science of The Total Environment, 2020, 717: 137033. doi: 10.1016/j.scitotenv.2020.137033 [47] LIU X W, ZHENG M G, WANG L, et al. Sorption behaviors of tris-(2, 3-dibromopropyl) isocyanurate and hexabromocyclododecanes on polypropylene microplastics [J]. Marine Pollution Bulletin, 2018, 135: 581-586. doi: 10.1016/j.marpolbul.2018.07.061 [48] CHEN S P, TAN Z R, QI Y S, et al. Sorption of tri-n-butyl phosphate and tris (2-chloroethyl) phosphate on polyethylene and polyvinyl chloride microplastics in seawater [J]. Marine Pollution Bulletin, 2019, 149: 110490. doi: 10.1016/j.marpolbul.2019.110490 [49] WANG W F, WANG J. Comparative evaluation of sorption kinetics and isotherms of Pyrene onto microplastics [J]. Chemosphere, 2018, 193: 567-573. doi: 10.1016/j.chemosphere.2017.11.078 [50] ZHANG J H, CHEN H B, HE H, et al. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions [J]. Chemosphere, 2020, 245: 125628. doi: 10.1016/j.chemosphere.2019.125628 [51] WU P F, CAI Z W, JIN H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics [J]. Science of the Total Environment, 2019, 650: 671-678. doi: 10.1016/j.scitotenv.2018.09.049 [52] XU P C, GE W, CHAI C, et al. Sorption of polybrominated diphenyl ethers by microplastics [J]. Marine Pollution Bulletin, 2019, 145: 260-269. doi: 10.1016/j.marpolbul.2019.05.050 [53] HU J Q, YANG S Z, GUO L, et al. Microscopic investigation on the adsorption of lubrication oil on microplastics [J]. Journal of Molecular Liquids, 2017, 227: 351-355. doi: 10.1016/j.molliq.2016.12.043 [54] GUO X T, PANG J W, CHEN S Y,et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018, 136: 240-245. [55] GUO X T, PANG J W, CHEN S Y, et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018, 209: 240-245. doi: 10.1016/j.chemosphere.2018.06.100 [56] GUO X, LIU Y, WANG J L. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study [J]. Marine Pollution Bulletin, 2019, 145: 547-554. doi: 10.1016/j.marpolbul.2019.06.063 [57] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122 [58] LI Y D, LI M, LI Z, et al. Effects of particle size and solution chemistry on triclosan sorption on polystyrene microplastic [J]. Chemosphere, 2019, 231: 308-314. doi: 10.1016/j.chemosphere.2019.05.116 [59] WANG W F, WANG J. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment [J]. Ecotoxicology and Environmental Safety, 2018, 147: 648-655. doi: 10.1016/j.ecoenv.2017.09.029 [60] ELIZALDE-VELÁZQUEZ A, SUBBIAH S, ANDERSON T A, et al. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics [J]. Science of The Total Environment, 2020, 715: 136974. doi: 10.1016/j.scitotenv.2020.136974 [61] WU C X, ZHANG K, HUANG X L, et al. Sorption of pharmaceuticals and personal care products to polyethylene debris [J]. Environmental Science and Pollution Research International, 2016, 23(9): 8819-8826. doi: 10.1007/s11356-016-6121-7 [62] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018, 237: 460-467. doi: 10.1016/j.envpol.2018.02.050 [63] BAKIR A, ROWLAND S J, THOMPSON R C. Transport of persistent organic pollutants by microplastics in estuarine conditions [J]. Estuarine, Coastal and Shelf Science, 2014, 140: 14-21. doi: 10.1016/j.ecss.2014.01.004 [64] LIU X M, XU J, ZHAO Y P, et al. Hydrophobic sorption behaviors of 17β-estradiol on environmental microplastics [J]. Chemosphere, 2019, 226: 726-735. doi: 10.1016/j.chemosphere.2019.03.162 [65] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter [J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113 [66] 王一飞, 李淼, 于海瀛, 等. 微塑料对环境中有机污染物吸附解吸的研究进展 [J]. 生态毒理学报, 2019, 14(4): 23-30. WANG Y F, LI M, YU H Y, et al. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 23-30(in Chinese).
[67] QIU Y, ZHENG M G, WANG L, et al. Sorption of polyhalogenated carbazoles (PHCs) to microplastics [J]. Marine Pollution Bulletin, 2019, 146: 718-728. doi: 10.1016/j.marpolbul.2019.07.034 [68] GRANBY K, RAINIERI S, RASMUSSEN R R, et al. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax) [J]. Environmental Research, 2018, 164: 430-443. doi: 10.1016/j.envres.2018.02.035 [69] WANG T, WANG L, CHEN Q Q, et al. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport [J]. Science of The Total Environment, 2020, 748: 142427. doi: 10.1016/j.scitotenv.2020.142427 [70] CHEN Q Q, YIN D Q, JIA Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish [J]. Science of the Total Environment, 2017, 609: 1312-1321. doi: 10.1016/j.scitotenv.2017.07.144 [71] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L. ) [J]. Environmental Science & Technology, 2013, 47(1): 593-600. [72] TANG Y, RONG J H, GUAN X F, et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species [J]. Environmental Pollution, 2020, 258: 113845. doi: 10.1016/j.envpol.2019.113845 [73] LI Z C, YI X L, ZHOU H, CHI T, et al. Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa [J]. Environmental Pollution, 2020, 261: 113604. [74] CHEN Q, GUNDLACH M, YANG S, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity [J]. Science of the Total Environment, 2017, 584/585: 1022-1031. doi: 10.1016/j.scitotenv.2017.01.156 [75] YANG W F, GAO X X, WU Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa [J]. Ecotoxicology and Environmental Safety, 2020, 195: 110484. doi: 10.1016/j.ecoenv.2020.110484 [76] ZHANG Q, QU Q, LU T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth [J]. Environmental Pollution, 2018, 243: 1106-1112. doi: 10.1016/j.envpol.2018.09.073