-
大气气溶胶是悬浮在大气中固体和液体颗粒的总称,影响环境能见度、公众健康和气候[1]。沙尘气溶胶即矿物沙尘,是大气气溶胶的一种存在形式。沙尘天气多发于干旱半干旱地区,沙尘暴粉尘可被传输数千公里,进而影响全球气候过程[2]、 大气化学[3]和生物地球化学循环[4]。我国有关沙尘气溶胶的研究多集中在光学特性研究上,而在理化特征方向上的研究较少。
Chu等[5]总结了2010年3月21日发生在中国台湾北部的一次特大沙尘事件,研究显示沙尘输送的距离取决于风暴出现的气象条件。在对3类不同污染过程下的大气气溶胶水溶性无机离子特征的研究发现,沙尘会带来大量粗颗粒[6];通过对毛乌素沙漠[7]、塔克拉玛干沙漠[8]、科尔沁沙漠[9]的研究,均显示沙尘气溶胶中主要离子是SO42−、Na+、Ca2+,并表明Ca2+主要来自矿物源如沙尘,高浓度SO42−、Na+多是因为塔克拉玛干沙漠的古海洋环境以及哈萨克斯坦及新疆北部盐碱地的影响,但是也可能受到人为源的影响。Arimoto等[7]采集并分析镇北台(属沙尘源地)沙尘气溶胶水溶性组分发现,虽然镇北台地区是沙尘源地,但仍受到人为污染等的影响。
目前国内对PM2.5的潜在源解析大多集中在华北、华东及沿海地区,而对于西北半干旱地区研究报道相对较少[10]。2021年3月,我国北方遭遇近十年最强沙尘天气,其影响范围超380万平方公里[11]。为更好的了解沙尘期PM2.5中的水溶性离子特征及来源解析,本研究于2021年3月在宁夏中卫市某乡镇采集了PM2.5样品,并分析了其水溶性离子浓度,通过对比沙尘期与非沙尘期水溶性离子浓度变化特征,有助于更好地了解西北沙尘期与非沙尘期的气溶胶化学组成和潜在来源。经过沙尘期和非沙尘期PM2.5水溶性离子的对比,为西北地区大气沙尘研究提供一定科学数据基础。
2021年春季中国西北沙尘暴期间PM2.5水溶性离子特征及来源解析
Characteristics and sources of PM2.5 water-soluble ions during the spring sandstorm in Northwest China in 2021
-
摘要: 亚洲沙尘是全球沙尘的重要组成部分,中国西北部的戈壁沙漠和黄土高原是亚洲主要的沙尘源区之一,通过远距离传输至我国沿海城市及海洋,可能影响着城市空气质量、海洋初级生产力及全球气候系统。2021年3月,中国西北地区共发生3次沙尘暴事件。后向轨迹表明沙尘期气团主要起源于萨雷耶西克阿特劳沙漠、塔克拉玛干沙漠(古海洋性沙漠)等。为了解中国西北沙尘暴期间PM2.5水溶性离子(WSIs)特征及来源分析,本研究于3月在宁夏中卫市某乡镇采集了PM2.5样品,并测定了其水溶性离子。结果显示,沙尘期和非沙尘期离子浓度存在较大的差异,沙尘期总WSIs浓度为(45.8±18.1) μg·m−3,远高于非沙尘期的总WSIs浓度(29.7±12.8) μg·m−3,约为非沙尘期的2倍。其中SO42−、Ca2+、Na+、NH4+是沙尘期和非沙尘期PM2.5中主要的4种离子,占比分别为81.8%和77.9%。通过相关性及化学计量关系分析得出,沙尘期PM2.5中WSIs来源主要以自然来源(地壳土壤风化以及海盐)为主;非沙尘期除自然来源外,还可能受煤燃烧及机动车尾气等人为二次来源的影响。运用潜在源贡献因子分析法( PSCF) 和浓度权重轨迹分析法( CWT),分析了沙尘期与非沙尘期中卫市PM2.5总水溶性离子浓度潜在源区及其对研究区WSIs的贡献。结果表明,沙尘期潜在源区主要分布在中卫市的西北一带,权重浓度超过30 μg·m−3。非沙尘期主要受中卫市周边地区及西北一带的叠加影响,中卫市周边地区权重浓度超过30 μg·m−3。Abstract: Asian dust is an important component of global dust,and the Gobi Desert and loess Plateau in northwest China are the main sources of dust in Asia, which can be exported to coastal cities and oceans by long-distance transport and affect urban air quality, marine primary productivity and global climate system. In March 2021, three sandstorm events occurred in northwest China. The backward track indicated that the air mass originated from the Sarexik Atrau desert and the Taklimakan desert (ancient maritime desert). To understand the characteristics and sources of water-soluble ions (WSIs) in PM2.5 during sandstorms in northwest China. PM2.5 samples were collected in a township in Zhongwei, and the water-soluble ion concentrations were measured. The results showed that there is a great difference in ion concentration between dust and non-dust periods, and the WSIs concentration in dust period was (45.8±18.1) μg·m−3, much higher than the WSIs in non-dust period (29.7±12.8) μg·m−3, the concentration in dust period was about twice of that in non-dust period. SO42−, Ca2+, Na+, NH4+ are the four main ions in PM2.5 in dust period and non-dust period, accounting for 81.8% and 77.9%, respectively. Through correlation and stoichiometric analysis, the main WSIs sources of PM2.5 in dust period are natural sources (crust soil weathering and sea salt). In addition to natural sources, non-dust period may also be affected by secondary sources, such as coal combustion and motor vehicle exhaust. Potential source contribution factor analysis (PSCF) and concentration weight trajectory analysis (CWT) were used to analyze the potential source areas of WSIs their contribution to WSIs in the study area during dust and non-dust periods. The results show that the potential source area of dust period is mainly distributed in the northwest of Zhongwei, and the weight concentration is more than 30 μg·m−3. The non-dust period is mainly influenced by the superposition of the surrounding area of Zhongwei and the northwest area, and the weighted concentration of the surrounding area of Zhongwei is more than 30 μg·m−3.
-
Key words:
- Sandstorm /
- PM2.5 /
- Water-soluble ions /
- Composition characteristics /
- Source apportionment /
- Ningxia
-
表 1 样品采集信息表
Table 1. Sample collection information
采样时间
Sampling date样品编号
Sample number天气
Weather2021.03.13—14 S1 非沙尘+强沙尘暴 2021.03.15—16 S2 强沙尘暴 2021.03.17—18 S3 非沙尘+强沙尘暴 2021.03.19—20 S4 扬沙 2021.03.27—28 S5 强沙尘暴 2021.03.02—03 FS1 非沙尘 2021.03.04—05 FS2 非沙尘 2021.03.06—07 FS3 非沙尘 2021.03.09—10 FS4 非沙尘 2021.03.11—12 FS5 非沙尘 2021.03.21—22 FS6 非沙尘 2021.03.23—24 FS7 非沙尘 2021.03.25—26 FS8 非沙尘 2021.03.30—31 FS9 非沙尘 表 2 PM2.5中水溶性离子浓度(μg·m−3)
Table 2. Concentrations of water-soluble ions in PM2.5 (μg·m−3)
Na+ NH4+ K+ Mg2+ Ca2+ SO42− NO3− Cl− 总离子(WSIs) 沙尘期 平均值 10.1 3.9 2.6 1.3 9.4 14.0 0.8 3.7 45.8 最大值 16.1 6.5 3.7 2.0 13.4 23.4 1.3 6.5 72.8 最小值 5.4 1.8 1.5 0.7 6.7 6.8 0.3 1.0 24.1 百分比/% 22.1 8.5 5.7 2.8 20.6 30.6 1.7 8.0 100.0 STD 3.9 1.7 0.8 0.4 2.3 6.6 0.3 2.1 18.1 非沙尘期 平均值 2.5 4.5 1.8 0.7 8.0 8.1 2.0 2.0 29.7 最大值 7.7 8.1 2.9 1.3 15.7 12.2 4.4 2.9 54.7 最小值 1.0 1.3 0.9 0.3 3.3 4.3 1.0 0.5 12.6 百分比/% 8.5 15.1 6.1 2.4 26.9 27.4 6.8 6.8 100.0 STD 1.9 2.1 0.6 0.3 3.5 2.6 1.1 0.7 12.8 沙尘期 北向 5.39 6.54 3.06 1.43 10.31 6.78 0.75 1.00 35.26 西北向 11.30 3.22 2.51 1.28 9.22 15.79 0.77 4.32 48.41 非沙尘期 西北向 1.61 3.28 1.33 0.48 5.92 7.77 1.80 1.98 24.17 南向 2.09 6.48 2.25 0.77 10.00 8.90 2.85 1.73 35.06 注:沙尘期与非沙尘期各方向离子浓度均为平均值.
Note: The ion concentrations in all directions in dust and non-dust periods are average values.表 3 PM2.5水溶性离子平均质量浓度对比其他研究(μg·m−3)
Table 3. Comparison of water-soluble ions concentration of PM2.5 with other research (μg·m−3)
地点
Site类型
Type时间
TimeNa+ NH4+ K+ Mg2+ Ca2+ SO42− NO3− Cl− 贵阳[27] 背景区 2017 0.07 2.56 0.37 0.11 1.98 8.53 2.21 0.16 石家庄[28] 城市 2010 0.69 9.33 3.4 0.25 2.62 35.63 30.38 8.69 塔克拉玛干沙漠[8] 沙漠腹地 2007.03—04 13.4 0.5 0.9 1.0 13.7 21.2 1.2 14.4 通榆[9] 沙尘期 2006.04—06 4.5 1.2 1.7 1.0 12.5 11.8 4.6 1.5 非沙尘期 3.3 0.6 0.8 0.3 4.5 5.7 3 1.1 兰州[29] 沙尘期 2015.04—07 0.89 2.91 0.48 0.31 2.01 6.2 4.48 0.69 非沙尘期 0.8 1.94 0.38 0.22 0.99 5.45 2.17 0.47 和田[30] 沙尘期 2020.05—07 9.43 0.28 0.92 0.45 12.78 23.81 2.57 7.83 非沙尘期 5.41 0.38 0.7 0.17 6.24 11.25 1.9 3.47 北京[31] 沙尘期 2006.03—04 0.68 6.30 2.08 0.36 3.94 19.59 6.37 — 非沙尘期 0.6 7.21 2.28 0.35 2.36 21.57 14.9 — 中卫(本研究) 沙尘期 2021.03 10.12 3.89 2.62 1.31 9.44 13.99 0.77 3.65 非沙尘期 2.52 4.47 1.79 0.71 7.98 8.14 2.02 2.02 表 4 沙尘期PM2.5中各离子间的相关性分析
Table 4. Correlation analysis of various ions in PM2.5 during dust period
离子(Ion) Na+ NH4+ K+ Mg2+ Ca2+ SO42− NO3− Cl− Na+ 1 −0.08 0.44 0.43 0.08 −0.20 −0.74 −0.10 NH4+ 1 0.79 0.73 0.57 −0.95* −0.51 −0.94* K+ 1 0.89* 0.78 −0.90* −0.68 −0.91* Mg2+ 1 0.73 −0.88* −0.68 −0.75 Ca2+ 1 −0.63 −0.11 −0.70 SO42− 1 0.69 0.94* NO3− 1 0.55 Cl− 1 注: *表示在0.05水平上显著相关,**表示在0.01水平上显著相关.
Note: * correlation is significant at the 0.05 level,**correlation is significant at the 0.01 level.表 5 非沙尘期PM2.5中各离子间的相关性分析
Table 5. Correlation analysis of various ions in PM2.5 during non-dust period
离子(Ion) Na+ NH4+ K+ Mg2+ Ca2+ SO42− NO3− Cl− Na+ 1 −0.09 0.42 0.85** 0.32 0.17 −0.33 0.48 NH4+ 1 0.77* 0.28 0.71* 0.24 0.58 −0.32 K+ 1 0.80** 0.94** 0.02 0.13 −0.28 Mg2+ 1 0.73* 0.05 −0.23 0.11 Ca2+ 1 −0.16 −0.05 −0.44 SO42− 1 0.77* 0.67* NO3− 1 0.20 Cl− 1 注: *表示在0.05水平上显著相关,**表示在0.01水平上显著相关.
Note: * correlation is significant at the 0.05 level,**correlation is significant at the 0.01 level. -
[1] ZANG L, ZHANG Y, ZHU B, et al. Characteristics of water-soluble inorganic aerosol pollution and its meteorological response in Wuhan, Central China [J]. Atmospheric Pollution Research, 2021, 12(3): 362-369. doi: 10.1016/j.apr.2021.01.003 [2] SHAO Y P, WYRWOLL K H, CHAPPELL A, et al. Dust cycle: An emerging core theme in Earth system science [J]. Aeolian Research, 2011, 2(4): 181-204. doi: 10.1016/j.aeolia.2011.02.001 [3] MIDDLETON N J. Desert dust hazards: A global review [J]. Aeolian Research, 2017, 24: 53-63. doi: 10.1016/j.aeolia.2016.12.001 [4] FALKOWSKI P G, BARBER R T, SMETACEK V. Biogeochemical controls and feedbacks on ocean primary production [J]. Science, 1998, 281(5374): 200-206. doi: 10.1126/science.281.5374.200 [5] CHU H J, YU H L, KUO Y M. Identifying spatial mixture distributions of PM2.5 and PM10 in Taiwan during and after a dust storm [J]. Atmospheric Environment, 2012, 54: 728-737. doi: 10.1016/j.atmosenv.2012.01.022 [6] 张秋晨, 朱彬, 苏继峰, 等. 南京3类不同大气污染过程下气溶胶水溶性无机离子的特征研究 [J]. 环境科学, 2012, 33(6): 1944-1951. ZHANG Q C, ZHU B, SU J F, et al. Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City [J]. Environmental Science, 2012, 33(6): 1944-1951(in Chinese).
[7] ARIMOTO R, ZHANG X Y, HUEBERT B J, et al. Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D19): D19S04. [8] 李娟. 中亚地区沙尘气溶胶的理化特性、来源、长途传输及其对全球变化的可能影响[D]. 上海: 复旦大学, 2009. LI J. Characteristics, source, long-range transport of dust aerosol over the central Asia and its potential effect on global change[D]. Shanghai: Fudan University, 2009(in Chinese).
[9] SHEN Z X, WANG X, ZHANG R J, et al. Chemical composition of water-soluble ions and carbonate estimation in spring aerosol at a semi-arid site of Tongyu, China [J]. Aerosol and Air Quality Research, 2011, 11(4): 360-368. doi: 10.4209/aaqr.2011.02.0010 [10] 余创, 陈伟, 张玉秀. 西北干旱区乌海市PM2.5的输送路径及潜在源解析[J]. 中国科学院大学学报, 2022, 39(1):43-54. YU C, CHEN W, ZHANG Y X. The transport pathways and potential source regions of PM2.5 in the semi-arid area of northwest China[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(1): 43-54(in Chinese).
[11] 中国新闻网. 今年入春以来我国沙尘暴日数和强度为近9年之最[EB/OL]. [2021-4-18]. https://baijiahao.baidu.com/s?id=1697369611488298941&wfr=spider&for=pc. China News. The number and intensity of sandstorms in China is the highest in nine years since the beginning of spring this year[EB/OL]. [2021-4-18]. https://baijiahao.baidu.com/s?id=1697369611488298941&wfr=spider&for=pc.
[12] WANG Y Q, ZHANG X Y, DRAXLER R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data [J]. Environmental Modelling & Software, 2009, 24(8): 938-939. [13] 李星, 赵文吉, 熊秋林, 等. 北京采暖季PM2.5水溶性无机离子污染特征及其影响因素 [J]. 生态环境学报, 2018, 27(1): 93-100. LI X, ZHAO W J, XIONG Q L, et al. The pollution characteristics and influencing factors of PM2.5 inorganic water-soluble ions in Beijing during heating season [J]. Ecology and Environmental Sciences, 2018, 27(1): 93-100(in Chinese).
[14] XU L L, DUAN F K, HE K B, et al. Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing [J]. Environmental Pollution , 2017, 227: 296-305. doi: 10.1016/j.envpol.2017.04.076 [15] JIANG H M, LI Z Q, WANG F T, et al. Water-Soluble Ions in Atmospheric Aerosol Measured in a Semi-Arid and Chemical-Industrialized City, Northwest China [J]. Atmosphere, 2021, 12(4): 456. doi: 10.3390/atmos12040456 [16] 杨阳, 李杏茹, 陈曦, 等. 春季沙尘过程北京市不同粒径大气气溶胶污染特征及来源分析 [J]. 环境科学, 2018, 39(12): 5315-5322. YANG Y, LI X R, CHEN X, et al. Analysis of different particle sizes, pollution characteristics, and sources of atmospheric aerosols during the spring dust period in Beijing [J]. Environmental Science, 2018, 39(12): 5315-5322(in Chinese).
[17] 唐喜斌. 秸秆燃烧对灰霾天气的影响分析及其排放因子与颗粒物成分谱[D]. 上海: 华东理工大学, 2014. TANG X B. Biomass burning impacts on the haze weather and its emission factors and PM chemical composition[D]. Shanghai: East China University of Science and Technology, 2014(in Chinese).
[18] ZHAO S, LIU S L, HOU X Y, et al. Temporal dynamics of SO2 and NOX pollution and contributions of driving forces in urban areas in China[J]. Environmental Pollution, 2018, 242(Pt A): 239-248. [19] KUNIYAL J C, SHARMA M, CHAND K, et al. Water soluble ionic components in particulate matter (PM10) during high pollution episode days at mohal and kothi in the north-western Himalaya, India [J]. Aerosol and Air Quality Research, 2015, 15(2): 529-543. doi: 10.4209/aaqr.2013.09.0297 [20] HONG Y, LI C, LI X, et al. Analysis of compositional variation and source characteristics of water-soluble ions in PM2.5 during several winter-haze pollution episodes in Shenyang, China [J]. Atmosphere, 2018, 9(7): 280. doi: 10.3390/atmos9070280 [21] SHEN Z X, CAO J J, ARIMOTO R, et al. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China [J]. Atmospheric Environment, 2009, 43(18): 2911-2918. doi: 10.1016/j.atmosenv.2009.03.005 [22] 肖红伟, 肖化云, 王燕丽. 贵阳大气降水化学特征及来源分析 [J]. 中国环境科学, 2010, 30(12): 1590-1596. XIAO H W, XIAO H Y, WANG Y L. Chemical characteristics and source apportionment of precipitation in Guiyang [J]. China Environmental Science, 2010, 30(12): 1590-1596(in Chinese).
[23] SIMONEIT B R T, SCHAUER J J, NOLTE C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles [J]. Atmospheric Environment, 1999, 33(2): 173-182. doi: 10.1016/S1352-2310(98)00145-9 [24] HSU S C, LIU S C, HUANG Y T, et al. Long-range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in Northern Taiwan [J]. Journal of Geophysical Research Atmospheres, 2009, 114(D14): D14301. doi: 10.1029/2009JD011725 [25] RYU S Y, KWON B G, KIM Y J, et al. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea [J]. Atmospheric Research, 2007, 84: 362-373. doi: 10.1016/j.atmosres.2006.09.007 [26] 刘小真, 任羽峰, 刘忠马, 等. 南昌市大气颗粒物污染特征及PM2.5来源解析 [J]. 环境科学研究, 2019, 32(9): 1546-1555. LIU X Z, REN Y F, LIU Z M, et al. Pollution characteristics of atmospheric particles and source apportionment of PM2.5 in Nanchang City [J]. Research of Environmental Sciences, 2019, 32(9): 1546-1555(in Chinese).
[27] 肖浩, 肖化云, 吴攀, 等. 贵阳秋季PM2.5水溶性离子组成特征及来源解析 [J]. 环境化学, 2019, 38(3): 548-555. doi: 10.7524/j.issn.0254-6108.2018051501 XIAO H, XIAO H Y, WU P, et al. Composition and source analysis of water-soluble ions in PM2.5 during autumn in Guiyang [J]. Environmental Chemistry, 2019, 38(3): 548-555(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051501
[28] ZHAO P S, DONG F, HE D, et al. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China [J]. Atmospheric Chemistry and Physics, 2013, 13(9): 4631-4644. doi: 10.5194/acp-13-4631-2013 [29] 刘志明. 兰州市PM2.5污染特征及其来源解析[D]. 兰州: 兰州大学, 2016. LIU Z M. Pollution characteristics and source apportionment of PM2.5 in Lanzhou[D]. Lanzhou University, 2016(in Chinese).
[30] 涂丹雅, 谢海燕, 董亚明. 和田市沙尘与非沙尘天PM2.5和PM10中水溶性离子特征分析 [J]. 广东化工, 2021, 48(18): 122-123,155. doi: 10.3969/j.issn.1007-1865.2021.18.051 TU D Y, XIE H Y, DONG Y M. Characteristics of water soluble ions in PM2.5 and PM10 in dust and non dust days in Hotan City [J]. Guangdong Chemical Industry, 2021, 48(18): 122-123,155(in Chinese). doi: 10.3969/j.issn.1007-1865.2021.18.051
[31] 孙珍全, 邵龙义, 李慧. 沙尘期间大气颗粒PM10与PM2.5化学组分的浓度变化及来源研究 [J]. 中国粉体技术, 2010, 16(1): 35-40. doi: 10.3969/j.issn.1008-5548.2010.01.008 SUN Z Q, SHAO L Y, LI H. Concentration variation of airborn particles PM10 and PM2.5 chemical composition and their sources during dust events [J]. China Powder Science and Technology, 2010, 16(1): 35-40(in Chinese). doi: 10.3969/j.issn.1008-5548.2010.01.008
[32] LUO L, YAO X H, GAO H W, et al. Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean [J]. Atmospheric Chemistry and Physics, 2016, 16(1): 325-341. doi: 10.5194/acp-16-325-2016 [33] 黄世鸿, 李如祥, 沈恒华, 等. 常州市大气气溶胶颗粒来源解析 [J]. 气象科学, 1995, 15(2): 92-100. HUANG S H, LI R X, SHEN H H, et al. Sources of aerosol partcales in Changzhou City [J]. Scientia Meteorologica Sinica, 1995, 15(2): 92-100(in Chinese).
[34] 黄辉军, 刘红年, 蒋维楣, 等. 南京市PM2.5物理化学特性及来源解析 [J]. 气候与环境研究, 2006, 11(6): 713-722. doi: 10.3969/j.issn.1006-9585.2006.06.005 HUANG H J, LIU H N, JIANG W M, et al. Physical and chemical characteristics and source apportionment of PM2.5 in Nanjing [J]. Climatic and Environmental Research, 2006, 11(6): 713-722(in Chinese). doi: 10.3969/j.issn.1006-9585.2006.06.005
[35] 余南娇, 黄渤, 李梅, 等. 大气细颗粒物扬尘源单颗粒质谱特征 [J]. 中国环境科学, 2017, 37(4): 1262-1268. doi: 10.3969/j.issn.1000-6923.2017.04.008 YU N J, HUANG B, LI M, et al. Single particle characteristics of fine particulate matter in dust [J]. China Environmental Science, 2017, 37(4): 1262-1268(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.04.008
[36] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241. doi: 10.1029/95RG00262 [37] KOCAK M, KUBILAY N, MIHALOPOULOS N. Ionic composition of lower tropospheric aerosols at a Northeastern Mediterranean site: Implications regarding sources and long-range transport [J]. Atmospheric Environment, 2004, 38(14): 2067-2077. doi: 10.1016/j.atmosenv.2004.01.030 [38] KULKARNI P, BARON P A, WILLEKE K. Aerosol Measurement[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2011.