-
全氟和多氟烷基物质(perfluoroalkyl and polyfluoroalkyl substances,PFASs)是一类人工合成的化学物质[1],因具有很好的热稳定性、较低的化学活性和良好的耐水性能而被广泛应用于防污/防水织物、消防泡沫、保护涂层以及食品包装等领域[2]。近年来,含PFASs的工业废水排放导致PFASs在环境基质[3]、野生动物体内[4]、人体组织和血清中[5]被普遍检出,同时,PFASs具有神经毒性、免疫毒性[6]、内分泌干扰作用及对胎儿发育的多种不良影响[7],其健康风险引起人们的广泛关注。
全氟辛酸(perfluorooctanoic acid,PFOA)是检出频率较高的一种PFASs[8],PFOA及其盐类于2019年在《斯德哥尔摩公约》中被列为新的持久性有机污染物[9](persistent organic pollutants,POPs)。PFOA具有高键能的碳氟键(C—F,552.0 kJ·mol−1),因此,化学稳定性高[10]。常规水处理方法如吸附、混凝沉淀和微生物处理等很难将其降解[11]。高级氧化工艺作为目前重要的深度处理工艺,其主要活性基团是具有强氧化能力的羟基自由基(HO·),其可以将大分子难降解有机物氧化为低毒或无毒的小分子物质。但是,目前由于PFOA与HO·的反应活性很低,所以多数高级氧化工艺也无法有效处理PFOA[12-14]。因此,研发高效处理工艺降解PFOA对于保护水质安全和人类健康十分重要。
近年来,紫外(UV)活化过硫酸盐(PDS)的工艺已被用于许多有机物的氧化降解中[15]。PDS光解可以产生2个硫酸根自由基(SO4−·)(式(1)),SO4−·是一种具有强氧化性的自由基[16]。
SO4−·的氧化还原电势为2.3 V,是一种非常亲电的自由基,在降解有机化合物方面比HO·更有效[17]。现有研究[18]表明,SO4−·可有效降解PFOA。QIAN等[19]通过UV/PDS工艺降解PFOA,在平均光强为2.88×10−7 einstein·(L·s)−1的条件下,在单独UV辐照下PFOA不发生降解,在UV/PDS工艺下其降解率为85.6%。YIN等[20]在pH为2的条件下活化PDS降解PFOA,PFOA降解率达89.9%。
光源是UV高级氧化的重要影响因素,相对于传统的低压汞灯(输出254 nm单波长UV),新型光源真空UV/UV(VUV/UV)汞灯可在不增加电能输入的情况下,额外输出185 nm VUV[21],在水处理应用中具有广阔的前景。VUV可以通过光解水产生强氧化性的HO·(式(2))降解有机污染物,同时VUV光子具有较高的能量,可直接光解有机污染物,目前已有研究表明VUV直接光解可有效降解PFOA[22]。因此,采用VUV/UV汞灯作为UV/PDS的光源,即VUV/UV与UV/PDS相结合,形成VUV/UV/PDS工艺具有高效降解PFOA的潜力。
本课题组前期开发了细管流光反应系统,可配装VUV/UV汞灯同时输出UV和VUV辐照,以探讨VUV/UV对水中污染物的降解效果。其可在保证UV剂量准确测定的基础上,输出接近实际工程的UV辐照强度,且具有实验样品量少、操作简单等优点。因此,本研究基于细管流光反应系统,探究了VUV/UV/PDS工艺对PFOA的降解效果,通过分析UV和VUV光子吸收分布以及活性基团降解贡献,探究了VUV/UV和UV/PDS工艺协同降解PFOA的效果和机理,以期为VUV/UV/PDS工艺的实际应用提供参考。
真空紫外/紫外/过硫酸盐工艺降解水中全氟辛酸
Aquatic perfluorooctanoic acid degradation by a vacuum-ultraviolet/ ultraviolet/ persulfate process
-
摘要: 全氟辛酸(PFOA)是一种水中检出频率较高的全氟和多氟烷基物质,常规水处理工艺难以有效去除。紫外(UV)/过硫酸盐(PDS)工艺对PFOA具有较好的处理效果。相对于传统低压汞灯,新型光源真空UV/UV(VUV/UV)汞灯,可在不增加电能输入下,额外输出185 nm VUV光子有效光解PFOA。因此,采用VUV/UV汞灯驱动UV/PDS工艺具有高效降解PFOA的潜力。选用前期研发的配装VUV/UV汞灯的细管流光反应系统开展研究,通过微量过氧化氢生成法和化学感光剂(尿苷)测定VUV和UV辐照强度分别为1.16×10−4 einstein·(m2·s)−1和1.39×10−3 einstein·(m2·s)−1。结果表明,相对于单独UV和VUV/UV辐照,PDS的投加会生成SO4−·,进而强化PFOA的降解。由于额外的185 nm VUV光子辐照,VUV/UV/PDS工艺相对于UV/PDS工艺具有明显强化降解作用。当PDS浓度在0~0.9 mmol·L−1时,协同因子(R)均低于1,表明尽管VUV/UV汞灯可强化UV/PDS工艺对PFOA的去除,但PDS和VUV/UV的联用并没有明显的协同作用。PDS浓度的提升会增加SO4−·的生成,强化自由基降解的贡献(18%上升为35%),但同时竞争吸收VUV光子导致PFOA的直接VUV降解作用减弱(82%下降为65%),总体PFOA降解的协同效果有所减弱。以上研究结果表明VUV的加入可强化UV/PDS工艺去除PFOA的效率,为VUV/UV/PDS工艺应用于水中PFOA高效去除提供参考。
-
关键词:
- VUV/UV/PDS工艺 /
- 全氟辛酸 /
- 剂量测定 /
- 光子吸收 /
- 降解贡献
Abstract: Perfluorooctanoic acid (PFOA) is a kind of perfluoroalkyl and polyfluoroalkyl substance with high detection frequency in water, which cannot be effectively removed by the conventional water treatment processes. The ultraviolet (UV) /persulfate (PDS) process has a good treatment effect on PFOA. Compared with traditional low-voltage mercury lamps, the new light source of vacuum UV/UV (VUV/UV) mercury lamp can effectively photolyze PFOA by outputting additional 185 nm VUV photons without increasing the electric power input. Therefore, the UV/PDS process driven by VUV/UV mercury lamp has the potential to degrade PFOA efficiently. The mini-fluidic photoreaction system equipped with VUV/UV mercury lamp developed previously was used in this research. The VUV and UV irradiation intensities determined by micro hydrogen peroxide generation method and chemical actinometry (uridine) were 1.16×10−4 and 1.39×10−3 einstein·m−2·s−1, respectively. According to the results of PFOA degradation by different processes, the addition of PDS could generate SO4−· to enhance the degradation of PFOA comparing to individual UV or VUV/UV processes. Because of additional 185 nm VUV photon irradiation, the VUV/UV/PDS process could significantly enhance the PFOA degradation than the UV/PDS process. When the concentrations of PDS were 0~0.9 mmol·L−1, the values of synergistic factor R were all below 1, indicating that although the VUV/UV mercury lamp could enhance the removal of PFOA by UV/PDS process, the combination of PDS and UV/UV has no obvious synergistic effect. The increase of PDS concentration could increase the generation of SO4−· and strengthen the contribution of free radical degradation (18% to 35%), but PDS could also absorb VUV photons, which weakened the direct VUV degradation of PFOA (82% to 65%) and the overall synergistic effect of PFOA degradation. This study shows that the addition of VUV strengthens the UV/PDS process and significantly improves the removal efficiency of PFOA, which provides a theoretical reference for the application of the VUV/UV/PDS process to efficiently remove PFOA in water. -
-
[1] RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review[J]. Water Research, 2014, 50: 318-340. [2] ESFAHANI E B, MOHSENI M. Fluence-based photo-reductive decomposition of PFAS using vacuum UV (VUV) irradiation: Effects of key parameters and decomposition mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(1). [3] ZAREITALABAD P, SIEMENS J, HAMER M, et al. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater: A review on concentrations and distribution coefficients[J]. Chemosphere, 2013, 91(6): 725-732. doi: 10.1016/j.chemosphere.2013.02.024 [4] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environmental Science & Technology, 2001, 35(7): 1339-1342. [5] KANNAN K, CORSOLINI S, FALANDYSZ J, et al. Perfluorooctane sulfonate and related fluorochemicals in human blood from several countries[J]. Environmental Science & Technology, 2004, 38(17): 4489-4495. [6] DEWITT J C, PEDENADAMS M M, KELLER J M, et al. Immunotoxicity of perfluorinated compounds: Recent developments[J]. Toxicologic Pathology, 2012, 40(2): 300-311. doi: 10.1177/0192623311428473 [7] LEE Y J, KIM M K, BAE J, et al. Concentrations of perfluoroalkyl compounds in maternal and umbilical cord sera and birth outcomes in Korea[J]. Chemosphere, 2013, 90(5): 1603-1609. doi: 10.1016/j.chemosphere.2012.08.035 [8] FENTON S E, DUCATMAN A, BOOBIS A, et al. Perfluoroalkyl and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research[J]. Environmental Toxicology and Chemistry, 2020, 40(3): 606-630. [9] BAABISH A, SOBHANEI S, FIEDLER H, et al. Priority perfluoroalkyl substances in surface waters: A snapshot survey from 22 developing countries [J]. Chemosphere, 2021, 273. [10] GIRI R R, OZAKI H, OKADA T, et al. Factors influencing UV photodecomposition of perfluorooctanoic acid in water[J]. Chemical Engineering Journal, 2012, 180: 197-203. doi: 10.1016/j.cej.2011.11.049 [11] LOGANATHAN B G, SAJWAN K S, SINCLAIR E, et al. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia[J]. Water Research, 2007, 41(20): 4611-4620. doi: 10.1016/j.watres.2007.06.045 [12] VECITIS C D, PARK H, CHENG J, et al. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)[J]. Frontiers of Environmental Science & Engineering in China, 2009, 3(2): 129-151. [13] JAVED H, LYU C, SUN R N, et al. Discerning the inefficacy of hydroxyl radicals during perfluorooctanoic acid degradation[J]. Chemosphere, 2020, 247: 125-130. [14] HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches[J]. Environmental Science & Technology, 2004, 38(22): 6118-6124. [15] WACLAWEKS S, LUTZE H V, GRUBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 46-62. [16] DOGLIOTTI L, HAYON E. Flash photolysis of persulfate ions in aqueous solutions. Study of the sulfate and ozonide radical anions[J]. Journal of Physical Chemistry, 1967, 71(8): 2511-2516. doi: 10.1021/j100867a019 [17] DAVIES M J, GILBERT B C, THOMAS C B, et al. Electron spin resonance studies. Part 69. Oxidation of some aliphatic carboxylic acids, carboxylate anions, and related compounds by the sulphate radical anion (SO4Ÿ−)[J]. Journal of the Chemical Society Perkin Transactions, 1985, 8(2): 1199-1204. [18] HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technology, 2005, 39(7): 2383-2388. [19] QIAN Y J, GUO X, ZHANG Y L, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and chlorate formation[J]. Environmental Science & Technology, 2016, 50(2): 772-781. [20] YIN P H, HU Z H, SONG X, et al. Activated persulfate oxidation of perfluorooctanoic acid (PFOA) in groundwater under acidic conditions [J]. International Journal of Environmental Research and Public Health, 2016, 13(6). [21] ZOSCHKE K, BORNICK H, WORCH E. Vacuum-UV radiation at 185 nm in water treatment - A review[J]. Water Research, 2014, 52: 131-145. doi: 10.1016/j.watres.2013.12.034 [22] CHEN J, ZHANG P Y, LIU J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light[J]. Journal of Environmental Sciences, 2007, 19(4): 387-390. doi: 10.1016/S1001-0742(07)60064-3 [23] BADER H, STURZENEGGER V, HOIGNÉ J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD)[J]. Water Research, 1988, 22(9): 1109-1115. doi: 10.1016/0043-1354(88)90005-X [24] YANG L X, LI M K, LI W T, et al. A green method to determine VUV (185nm) fluence rate based on hydrogen peroxide production in aqueous solution[J]. Photochemistry and Photobiology, 2018, 94(4): 821-824. doi: 10.1111/php.12913 [25] GONZALEZ M G, OLIVEROS E, WORNER M, et al. Vacuum-ultraviolet photolysis of aqueous reaction systems[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2004, 5(3): 225-246. doi: 10.1016/j.jphotochemrev.2004.10.002 [26] OPPENLANDER T, SCHWARZWALDE R. Vacuum-UV oxidation (H2O-VUV) with a xenon excimer flow-through lamp at 172 nm: Use of methanol as actinometer for VUV intensity measurement and as reference compound for OH-radical competition kinetics in aqueous systems[J]. Journal of Advanced Oxidation Technologies, 2002, 5(2): 155-163. [27] 杨腊祥. 真空紫外/紫外降解饮用水中典型农药的机理和应用研究[D]. 北京: 中国科学院生态环境研究中心, 2018. [28] LI M K, QIANG Z M, HOU P, et al. VUV/UV/chlorine as an enhanced advanced oxidation process for organic pollutant removal from water: Assessment with a novel mini-fluidic VUV/UV photoreaction system (MVPS)[J]. Environmental Science & Technology, 2016, 50(11): 5849-5856. [29] 李垣皓. 真空紫外/热活化过硫酸盐对全氟辛酸的脱氟反应研究[D]. 杭州: 浙江大学, 2020. [30] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [31] HUANG J Y, WANG X, PAN Z Q, et al. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation[J]. Chemical Engineering Journal, 2016, 296: 329-334. doi: 10.1016/j.cej.2016.03.116