-
活性污泥法操作简单、运行稳定,对有机物的去除效率较高,已被广泛应用于污水处理工艺中。然而,该工艺曝气环节能耗高,往往还需要投加大量药剂 (外碳源、除磷剂等) ,会造成巨大的能源消耗和温室气体排放。在化石燃料能源危机明显的情况下,研究者和环保工程师开始重视对工艺的节能减排优化[1-3]。在双碳背景下,研究以节能降耗和资源回收为目标的可持续污水低碳处理技术很有必要[4-6],并进一步设计绿色的污水处理技术路线[7],以推动水务行业转型升级。
我国污水处理行业碳排放量占全社会总排放量的1%~2%[8]。污水处理的碳循环设计决定了污水处理厂的能源自给率及碳中和运行的实现[9]。由于城市污水中的有机碳源蕴含丰富的化学能和热能,如何高效提取污水中有机物的方法至关重要。奥地利斯特拉斯( Strass) 污水处理厂以主流传统工艺( AB法) 与侧流现代工艺(厌氧氨氧化) 相结合处理方式,最大化回收进水中有机物。在2002 年之前,该厂的厌氧消化工艺产出的CH4转化电能最多只能满足该厂约80%的用电量。在2005年该厂的脱氮工艺改造为自养脱氮工艺 (DEMON)后,产CH4后的发电量已超过耗电量[10],使得该厂成为污水厂碳中和运行的先驱,为污水处理行业能源回收利用提供了成功范例。然而,由于该技术的运行过程繁琐,推广应用较困难。研究者通过化学强化城市污水预浓缩效果,并将浓缩液经过厌氧消化生成沼气,亦可作为能源加以利用[11]。但该方法式需投加大量铁盐和铝盐,且效率较低。李梅等[12]用生物吸附的方法研究了污水预浓缩效果,活性污泥对有机物吸附量不到300 mg·g−1,吸附量仍偏小,后续厌氧消化效率较低。GONG等[13]将污水膜过滤技术应用在污水预处理中,以实现从污水中回收多种资源,包括高质量的水、生物能源和有价值的营养素。MEZOHEGYI等[14]发现,曝气震动膜生物反应器在浓缩有机物的同时会造成生物降解导致耗氧污染物 (以COD计) 损失。杨媛[15]构建了两级动态膜反应器污水浓缩和厌氧发酵产能工艺,通过污水处理和浓缩液厌氧发酵,可产生的能量折算为电能为1.29 kWh·m−3,高于系统自身的能耗,实现了可观的能量盈余。然而,膜污染严重导致跨膜压差 (transmenbrane pressure,TMP) 快速增长,会引起膜通量下降和维护成本增加。
为使废物资源化、环境效益与经济效益和社会效益相统一[16],不能将研究局限在实验室规模。基于此,本课题组拟通过中试规模的研究来评价预浓缩有机物效果及膜污染控制情况,采用超滤膜浓缩装置预处理污水,进行有机物的浓缩回收,解析膜污染变化规律和膜污染控制原理,对浓缩回收的碳源作能源平衡分析,以期为探索污水有机物资源化途径提供参考。
基于膜分离的原污水碳源浓缩与能量平衡分析
Carbon source concentration and energy balance analysis of raw sewage based on membrane separation
-
摘要: 将污水中蕴含大量的有机物收集浓缩转化成甲烷等可利用能源,是污水资源化利用的重要方式。利用膜分离作用,将原污水的有机物直接收集浓缩,并探索最佳运行参数和操作策略。结果表明,截留有机物停留时间为3~4 d较合适,耗氧污染物 (以COD计) 回收率超过90%。能量平衡分析显示,通过回收有机物转化为甲烷能量为0.087 6 kW·h−1·m−3,回收量占总能耗的33%。中孔纤维膜表面形成的吸附性滤饼层阻止有机物与膜紧密结合,提高了膜分离效率。进一步解析了膜污染控制机理,以探索提高耗氧污染物 (以COD计) 浓缩效率的优化方案。本研究结果可为污水碳源捕获方法的研究提供参考,对城市水务行业碳减排工作有积极意义。Abstract: It is an important way to collect and concentrate a large amount of organic matter contained in sewage and convert it into available energy such as methane. Using the physical and chemical separation of ultrafiltration membrane, the organic matter from raw sewage was directly collected and concentrated, and the best operating parameters and operation strategy were explored. The results showed that it was appropriate to retain organic matter for 3~4 days, and the COD recovery rate was over 90%. The energy balance analysis showed that 0.0876 kW·h−1·m−3 was recovered by converting organic matter into methane, accounting for 33% of the total energy consumption. Adsorption cake layer formed on the surface of the mesoporous fiber membrane prevented organic matter from binding closely with the membrane, which improved the efficiency of membrane separation. The mechanism of membrane pollution control was further analyzed to explore an optimal scheme to improve the concentration efficiency of oxygen comsuming pollutant (COD). Capture carbon source from raw sewage can provide a good treatment method for energy self-sufficiency and resource utilization of sewage treatment in the future, and will have positive significance for carbon emission reduction in urban water industry.
-
表 1 膜浓缩装置运行阶段
Table 1. Operation stage of membrane concentration device
阶段 基地 水源 过滤模式 运行模式及主要参数 产水泵流量/(m3·h−1) 阶段1 A 市政污水 抽吸9 min,停歇1 min,
脉冲曝气1 min。污水原水直接过滤浓缩,浓缩过程不投加任何药剂,不排放浓缩液。水温约27 ℃。持续运行时间240 h。 4.0 阶段2 A 市政污水 抽吸9 min,停歇1 min,
脉冲曝气1 min。污水原水强化过滤浓缩,不排放浓缩液。投加复合阻塞剂30 mg·L−1。水温约28 ℃。持续运行时间504 h。 4.0 阶段3 B 村镇污水 抽吸8 min,
脉冲曝气2 min。污水原水强化过滤浓缩,每4 d排泥一次。复合阻塞剂50 mg·L−1。水温约28 ℃.已稳定运行2年多。 2.5 表 2 能量平衡分析
Table 2. Energy balance analysis
项目 进水流量 提升泵能耗 平均TMP 抽吸能耗 标准空气流量 曝气能耗 厌氧消化
所需的能耗
(UASB)需要总能耗 单位 m3·h−1 kW·h−1·m−3 kPa kW·h−1·m−3 Nm3·min−1 kW·h−1·m−3 kW·h−1·m−3 kW·h−1·m−3 数值 4 0.03 10 0.229 4 0.15 0.041 0 0.004 2 0.263 6 参考文献 本研究 [3] 本研究 本研究 本研究 本研究 [21] 本研究 项目 平均进水COD 1)浓缩液COD 初沉污泥厌氧
可生化COD比例甲烷化学能
(以每千克甲烷计)产甲烷系数 甲烷产电
效率通过甲烷
回收能量回收能量
占比单位 mg·L−1 mg·L−1 kW·h g·g−1 kW·h−1·m−3 数值 135 6 096 70% 13.9 0.23 38% 0.087 6 33% 参考文献 本研究 折算原污水的COD为103 mg·L−1 本研究 [3] [3] [3] 本研究 本研究 注:1)A实验基地阶段2,按强化混凝72 h浓缩液情况进行厌氧消化反应考虑。 -
[1] GONG H, JIN Z Y, WANG Q B, et al. Effects of adsorbent cake layer on membrane fouling during hybrid coagulation/adsorption microfiltration for sewage organic recovery[J]. Chemical Engineering Journal, 2017, 317: 751-757. doi: 10.1016/j.cej.2017.02.122 [2] JIN Z Y, GONG H, WANG K J. Application of hybrid coagulation microfifiltration with air backflflushing to direct sewage concentration for organic matter recovery[J]. Journal of Hazardous Materials, 2015, 283: 824-831. doi: 10.1016/j.jhazmat.2014.10.038 [3] 宫徽. 基于“碳源浓缩-氮源回收”的新型污水资源化工艺研究[D]. 北京: 清华大学, 2017. [4] 金正宇. 强化膜混凝反应器(E-MCR)生活污水资源化处理工艺研究[D]. 北京: 清华大学, 2015. [5] 张亚雷. 污水处理低碳技术的现状与评价[J]. 质量与认证. 2022(8): 78-80. [6] 王凯军. 可持续发展的新型、高效城市污水处理技术探讨[J]. 给水排水, 2005, 31(2): 32-35. [7] 王凯军, 宫徽, 金正宇. 未来污水处理技术发展方向的思考与探索[J]. 建设科技, 2013(2): 36-38. [8] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 47(3): 1-5. [9] 王凯军. 宫徽. 生态文明理念引领城市污水处理技术的创新发展[J]. 给水排水, 2016, 42(5): 1-3. [10] 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱奥地利 Strass 污水厂案例剖析[J]. 2014, 30(22): 1-5 [11] DIAMANTIS V, VERSTRAETE W, EFTAXIAS A, et al. , Sewage pre-concentration for maximum recovery and reuse at decentralized level[J]. Water Science and Technology, 2013, 67: 1188-1193. doi: 10.2166/wst.2013.639 [12] 李梅, 朱明璇, 王洪波, 等. 污泥对有机物的吸附动力学试验及模型构建[J]. 安全与环境学报. 2019, 19(6): 2150-2158. [13] GONG H, JIN Z Y, WANG X, et al. Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration[J]. Journal of Environmental Sciences, 2015, 32: 1-7. doi: 10.1016/j.jes.2015.01.002 [14] MEZOHEGYI G, BILAD M R, VANKELECOM I F. Direct sewage up-concentration by submerged aerated and vibrated membranes[J]. Bioresource Technology, 2012, 118: 1-7. doi: 10.1016/j.biortech.2012.05.022 [15] 杨媛. 两级动态膜反应器污水浓缩和厌氧发酵产能工艺特性研究[D]. 西安: 西安建筑科技大学, 2021. [16] 王凯军, 王晓惠, 柯建明, 等, 厌氧处理技术发展现状与未来发展领域[J]. 中国沼气, 1999, 17(4): 14-17. [17] 国家环境保护总局. 《水和废水监测分析方法》[M]. (第四版). 北京: 中国环境科学出版社, 2002. [18] 王启镔, 苑泉, 宫徽, 等. SBR 系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. [19] 周岩, 李继, 吕小梅, 等. 吸附-预沉淀MBR工艺处理生活污水及膜污染控制效果[J]. 环境工程学报, 2013, 7(12): 4649-4652. [20] 姬晓羽. 混凝/粉末炭组合的水处理特性对膜污染控制的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [21] JIN Z Y, MENG F L, GONG H, et al. Improved low-carbon-consuming fouling control in long-term membrane-based sewage pre-concentration: The role of enhanced coagulation process and air backflflushing in sustainable sewage treatment[J]. Journal of Membrane Science, 2017, 529: 252-262. doi: 10.1016/j.memsci.2017.02.009 [22] 杨敏, 李亚明, 魏源送, 等, 大型再生水厂不同污水处理工艺的能耗比较与节能途径[J]. 环境科学, 2015, 36(6): 2203-2209. [23] 刘智晓. 未来污水处理能源自给新途径——碳源捕获及碳源改向[J]. 中国给水排水, 2017, 33(8): 43-52. [24] 石川, 李坤, 边潇, 等. 餐厨垃圾厌氧处理“碳中和”综合效益评价[J]. 中国环境科学, 2023, 43(1): 436-445.