-
铅作为一种有毒重金属,对人体心血管系统、神经系统、肾和肝、生殖系统、呼吸系统、骨骼有不良影响[1]. 根据GB 25466-2010铅、锌工业污染物排放标准,排放污水的总铅含量应低于1 mg·L−1. 超标含Pb2+废水应在处理达标后方可排放,避免危害生态和环境. 目前,含铅废水的处理方法包括膜分离法、化学沉淀法、吸附法、离子交换法和电化学法等[2]. 其中,吸附法由于操作简单、成本低和效率高等优点,被视为最有前途的重金属废水处理方法[3]. 研究表明,碳基材料如碳纳米管、石墨烯、生物炭非常适合作为重金属废水处理的吸附剂[4]. 生物炭作为一种利用生物质原料,在无氧或限氧条件下通过热解制备的吸附剂,具备良好的比表面积、发达的多孔结构以及丰富的羟基、羧基等官能团,对废水中的重金属离子有良好的吸附性能,且处理成本和操作费用较低,已广泛应用于污水净化处理领域[5]. 例如,黄菲等[3]以不同的菌糠废弃物为原料制备生物炭,其中平菇菌糠生物炭对Cu2+最大吸附容量达到77.32 mg·g−1;香菇菌糠生物炭对Cd2+最大吸附量为74.26 mg·g−1,菌糠生物炭可作为一种廉价高效的吸附剂应用于水体中Cu2+、Cd2+的去除. Wang等[6]以废弃柠条制备生物炭,对Pb2+和Cd2+的最大吸附量分别达到220.94 mg·g−1和42.43 mg·g−1,经粗略估算,生产1 t生物炭的成本约为70美元,制备成本低吸附效率高.
不同生物质原料制备的生物炭具备不同特性,对重金属吸附能力也存在差异,寻找廉价且高效的生物炭材料,是废水中重金属吸附脱除的研究热点[2]. 我国是水产大国,根据2022年《中国渔业统计年鉴》,中国水产甲壳类总产量超过800万t. 其中虾蛄海洋捕捞量为219709 t. 除鲜食外,主要加工成虾仁、罐头等产品,过程中会产生约30%—40%的加工副产物(主要为虾壳),虾壳有的用于提取钙质、甲壳素、虾青素、虾油等,有的被直接废弃,如不能加以合理利用,会造成一定的环境污染和大量资源的浪费[7]. 甲壳类废弃物中含有大量CaCO3和甲壳素/壳聚糖,有报道证明CaCO3和甲壳素/壳聚糖是很好的重金属吸附剂[8]. Ma等[8]以龙虾壳为原料制备生物炭,用于吸附水体中的Cu2+和Cd2+,对Cu2+和Cd2+的吸附容量分别达到74.1 mg·g−1、126 mg·g−1. Hopkins等[9]利用蟹肉加工副产品制备的生物炭去除硫酸盐溶液中的Cu2+,吸附量达到184.8 mg·g−1,性能超过了商用活性炭和木质纤维素生物炭. 目前还未见以虾蛄壳为原料制备生物炭作为吸附剂用于吸附Pb2+的报道. 因此,以量大、价格低且易获取的虾蛄壳为原料制备生物炭,开发高效的吸附剂,用于处理重金属污染水体,可为甲壳类废弃物资源化利用提供有效途径,同时减少对环境的影响,有着巨大的潜力和重要的实践意义.
本研究以虾蛄壳为原料制备生物炭,采用扫描电镜(SEM)、X射线能谱分析仪(EDS)、傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)和Zeta电位分析仪等对生物炭进行分析表征. 研究了虾蛄壳生物炭吸附Pb2+的影响因素、吸附动力学和等温吸附曲线,并探讨了吸附机理,为吸附水中的Pb2+以及大量甲壳类废弃物的资源化利用提供一种可行的方法.
虾蛄壳生物炭吸附Pb2+的特性及机理研究
Study on the adsorption properties and mechanism of Pb2+ by the biochar prepared from mantis shrimp shells
-
摘要: 以废弃虾蛄壳为原料制备生物炭(MSSB),利用SEM、BET、FTIR和XRD等技术对MSSB进行了表征. 探讨了吸附时间、Pb2+浓度、初始pH、MSSB添加量、共存离子以及共存污染物等对MSSB吸附Pb2+的影响. 利用吸附动力学模型与等温吸附模型以及测定吸附前后滤液中离子含量的变化探究吸附机理. MSSB对Pb2+的吸附动力学更符合拟二级动力学模型,吸附等温线则更符合Langmuir模型,根据Langmuir模型计算得出MSSB对Pb2+的最大吸附容量为1467.6 mg·g−1. 吸附以化学吸附为主,具体涉及孔隙作用、沉淀作用、络合作用、静电吸引、离子交换等多重作用机制. MSSB有潜力用于高效去除水体中的Pb2+.Abstract: The biochar named MSSB was prepared from mantis shrimp shells in this study. MSSB was characterized by SEM, BET, FTIR and XRD. Effects of adsorption time, Pb2+ concentration, initial pH, MSSB dosage, coexisting ions and coexisting contaminants on Pb2+ adsorption by MSSB were investigated. The adsorption mechanism was further explored by the adsorption kinetics model, the isothermal adsorption model, and the changes in ion concentrations in filtrates before and after adsorption. The pseudo-second-order kinetic model better fitted the adsorption kinetics of Pb2+ by MSSB, and the adsorption isotherm was better fitted with the Langmuir model. The maximum adsorption capacity of Pb2+ by MSSB was calculated to be 1467.6 mg·g−1 based on the Langmuir model. The adsorption process was mainly chemical adsorption, involving multiple mechanisms such as pore action, precipitation, complexation, electrostatic attraction and ion exchange. MSSB could be potentially used for the high-efficient removal of Pb2+ in water.
-
Key words:
- biochar /
- Pb2+ /
- adsorption /
- mantis shrimp shell /
- mechanism /
- coexisting ions.
-
图 1 MSS(A1)、MSSB(B1)、MSSB-Pb(C1)放大30 K的SEM图像. MSS(A2)、MSSB(B2)、MSSB-Pb(C2)的EDS图. EDS-Mapping获得的 MSS(A3)、MSSB(B3)和MSSB-Pb(C3)的铅元素分布图.
Figure 1. SEM image with MSS(A1), MSSB(B1)and MSSB-Pb(C1)enlarged at 30 K. EDS of MSS(A2), MSSB(B2), and MSSB-Pb(C2). Distribution of lead elements in MSS(A3), MSSB(B3)and MSSB-Pb(C3)obtained by EDS-Mapping.
表 1 MSSB的理化性质
Table 1. Physicochemical properties of MSSB
测试指标
Indexes数值
Value比表面积 30.77 m2·g−1 孔体积 0.016 cm3·g−2 孔径 10.16 nm 平均粒径 34.55 μm pH 13.29±0.05 灰分 69.29%±0.12% 羧基 (1.123±0.06)mmol·g−1 内酯基 (0.420±0.04)mmol·g−1 酚羟基 (0.147±0.01)mmol·g−1 总酸性官能团 (1.727±0.11)mmol·g−1 表 2 吸附动力学拟合参数
Table 2. Adsorption kinetics fitting parameters
拟一级动力学模型
Pseudo-first-order kinetic model拟二级动力学模型
Pseudo-second-order kinetic modelqe exp/(mg·g−1) Qe cal/(mg·g−1) k1/min−1 R2 qe cal/(mg·g−1) K2/(g·(mg·min)−1) R2 1199.49 1097.63 0.015 0.8942 1202.28 1.77×10−5 0.9646 表 3 吸附等温线模型的拟合参数
Table 3. The fitting parameters of adsorption isotherm models
Langmuir模型
Langmuir isothermFreundlich模型
Freundlich isothermqm cal/(mg·g−1) kL/(L·mg−1) R2 kF/(L·mg−1) 1/n R2 1467.6 0.0797 0.9785 1018.29 0.055 0.9414 表 4 以不同原料制备的生物炭对Pb2+的最大吸附容量
Table 4. Maximum adsorption capacity of Pb2+ for biochar prepared with different raw materials
原料
Raw material吸附容量/(mg·g−1)
Adsorption capacity改性方法
Method of modification参考文献
References小球藻 131.41 — [33] 螺旋藻 154.56 — [33] 小龙虾虾壳 87.4 — [34] 蟹壳 75.26 NaOH [35] 牡蛎壳 1553.042 — [16] 小龙虾虾壳 208.5 — [36] 小龙虾虾壳 183.5 — [37] 小龙虾虾 1334.6 MgCl2·6H2O [37] 小龙虾虾壳 101.65 — [15] 小龙虾虾壳 119.16 MgCl2 [15] 鱼骨 714.24 — [38] 草鱼骨头 774.748 — [39] 茶渣 84.03 — [40] 茶渣 188.68 H3PO4 [40] 马缨丹 75.74 — [41] 芦苇秸秆 24.06 — [10] 稻草 60.24 — [42] 稻草 307.85 纳米羟基磷灰石 [42] 蚕粪 9.33 壳聚糖和C10H2O6 [43] 柚子果皮 92.13 — [44] 棉杆 146.78 — [45] 竹子 168.21 (NH4)2S2O8 [46] 污水污泥 7.56 — [47] 污水污泥 57.48 KOH [47] 污水污泥 47.59 CH3COOK [47] 污水污泥 22.40 CO2 [47] 虾蛄壳 1467.6 — 本研究 —表示未经改性处理;吸附容量指在25 ℃或298K或293K下,Langmuir模型的计算值 表 5 MSSSB在吸附Pb2+前后滤液中离子的含量
Table 5. Contents of ions in the filtrate before and after adsorption of Pb2+ by MSSB
K+/(mg·L−1) Ca2+/(mg·L−1) Na+/(mg·L−1) Mg2+/(mg·L−1) SO42-/(mg·L−1) 吸附前 0.3164 13.2477 0.2610 2.6523 0.0654 吸附后 0.3852 15.5775 0.3049 2.6565 0.0042 -
[1] 乔增运, 李昌泽, 周正, 等. 铅毒性危害及其治疗药物应用的研究进展 [J]. 毒理学杂志, 2020, 34(5): 416-420. doi: 10.16421/j.cnki.1002-3127.2020.05.016 QIAO Z Y, LI C Z, ZHOU Z, et al. Research progress on toxic harm of lead and its therapeutic drug application [J]. Journal of Toxicology, 2020, 34(5): 416-420(in Chinese). doi: 10.16421/j.cnki.1002-3127.2020.05.016
[2] CHOUDHARY M, KUMAR R, NEOGI S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water [J]. Journal of Hazardous Materials, 2020, 392: 122441. doi: 10.1016/j.jhazmat.2020.122441 [3] 黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能 [J]. 环境化学, 2020, 39(4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604 HUANG F, YAN M, CHANG J N, et al. Adsorption performance of Cu2+ and Cd2+ in water by different biochars derived from spent mushroom substrate [J]. Environmental Chemistry, 2020, 39(4): 1116-1128(in Chinese). doi: 10.7524/j.issn.0254-6108.2019091604
[4] 张凤智, 王敦球, 曹星沣, 等. 高锰酸钾改性椰壳生物炭对水中 Cd(II)和 Ni(II)的去除性能及机制[J]. 环境科学 2023, 44(6): 3278-3287 ZHANG F Z, WANG D Q, CAO X F, et al. Removal performance and mechanism of potassium permanganate modified coconut shell biochar for Cd(II) and Ni(II) in aquatic environment[J]. Environmental Science, 2023, 44(6): 3278-3287 (in Chinese).
[5] HOPKINS D, HAWBOLDT K. Biochar for the removal of metals from solution: A review of lignocellulosic and novel marine feedstocks [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103975. doi: 10.1016/j.jece.2020.103975 [6] WANG T T, ZHENG J Y, LIU H T, et al. Adsorption characteristics and mechanisms of Pb2+ and Cd2+ by a new agricultural waste–Caragana korshinskii biomass derived biochar [J]. Environmental Science and Pollution Research, 2021, 28(11): 13800-13818. doi: 10.1007/s11356-020-11571-9 [7] 刘宇, 方国宏, 戎素红, 等. 虾、蟹壳利用的研究进展 [J]. 食品安全质量检测学报, 2018, 9(3): 461-466. LIU Y, FANG G H, RONG S H, et al. Research progress on the utilization of shrimp and crab shells [J]. Journal of Food Safety & Quality, 2018, 9(3): 461-466(in Chinese).
[8] MA J C, HUANG W, ZHANG X S, et al. The utilization of lobster shell to prepare low-cost biochar for high-efficient removal of copper and cadmium from aqueous: Sorption properties and mechanisms [J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104703. doi: 10.1016/j.jece.2020.104703 [9] HOPKINS D T, MacQUARRIE S, HAWBOLDT K A. Removal of copper from sulfate solutions using biochar derived from crab processing by-product [J]. Journal of Environmental Management, 2022, 303: 114270. doi: 10.1016/j.jenvman.2021.114270 [10] 唐登勇, 胡洁丽, 胥瑞晨, 等. 芦苇生物炭对水中铅的吸附特性 [J]. 环境化学, 2017, 36(9): 1987-1996. doi: 10.7524/j.issn.0254-6108.2017012001 TANG D Y, HU J L, XU R C, et al. Adsorption of lead onto reed biochar in aqueous solution [J]. Environmental Chemistry, 2017, 36(9): 1987-1996(in Chinese). doi: 10.7524/j.issn.0254-6108.2017012001
[11] DAI L C, TAN F R, LI H, et al. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal [J]. Journal of Environmental Management, 2017, 198: 70-74. [12] XU X Y, ZHAO Y H, SIMA J K, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review [J]. Bioresource Technology, 2017, 241: 887-899. doi: 10.1016/j.biortech.2017.06.023 [13] VAKILI M, RAFATULLAH M, SALAMATINIA B, et al. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review [J]. Carbohydrate Polymers, 2014, 113: 115-130. doi: 10.1016/j.carbpol.2014.07.007 [14] JIN Z L, XIAO S J, DONG H R, et al. Adsorption and catalytic degradation of organic contaminants by biochar: Overlooked role of biochar’s particle size [J]. Journal of Hazardous Materials, 2022, 422: 126928. doi: 10.1016/j.jhazmat.2021.126928 [15] ZHANG J Q, HU X L, YAN J P, et al. Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution [J]. Environmental Science and Pollution Research, 2020, 27(9): 9582-9588. doi: 10.1007/s11356-020-07631-9 [16] LIAN W L, LI H Y, YANG J H, et al. Influence of pyrolysis temperature on the cadmium and lead removal behavior of biochar derived from oyster shell waste [J]. Bioresource Technology Reports, 2021, 15: 100709. doi: 10.1016/j.biteb.2021.100709 [17] ZAZYCKI M A, BORBA P A, SILVA R N F, et al. Chitin derived biochar as an alternative adsorbent to treat colored effluents containing methyl violet dye [J]. Advanced Powder Technology, 2019, 30(8): 1494-1503. doi: 10.1016/j.apt.2019.04.026 [18] YAN Y B, SARKAR B, ZHOU L, et al. Phosphorus-rich biochar produced through bean-worm skin waste pyrolysis enhances the adsorption of aqueous lead [J]. Environmental Pollution, 2020, 266: 115177. doi: 10.1016/j.envpol.2020.115177 [19] CÁRDENAS G, CABRERA G, TABOADA E, et al. Chitin characterization by SEM, FTIR, XRD, and 13 cross polarization/mass angle spinning NMR [J]. Journal of Applied Polymer Science, 2004, 93(4): 1876-1885. doi: 10.1002/app.20647 [20] KAZAK O, TOR A. Characteristics and mechanisms for highly efficient adsorption of Pb(II) from aqueous solutions by engineered vinasse biochar with cold oxygen plasma process [J]. Chemical Engineering and Processing - Process Intensification, 2022, 171: 108766. doi: 10.1016/j.cep.2021.108766 [21] 苏德仁, 陈凤鸣, 李汇春, 等. 改性西瓜皮生物炭对废水中Pb2+的吸附研究 [J]. 新能源进展, 2021, 9(6): 496-505. doi: 10.3969/j.issn.2095-560X.2021.06.006 SU D R, CHEN F M, LI H C, et al. Study on the high-efficiency adsorption of Pb2+ by the modified watermelon peel biochar [J]. Advances in New and Renewable Energy, 2021, 9(6): 496-505(in Chinese). doi: 10.3969/j.issn.2095-560X.2021.06.006
[22] 朱俊波, 赵建兵, 周世萍, 等. 花生壳生物炭去除水中铅镉离子的性能及吸附机理研究 [J]. 西南林业大学学报(自然科学), 2022, 42(5): 78-86. ZHU J B, ZHAO J B, ZHOU S P, et al. Study on adsorption performance and mechanism of peanut shell biochar for Pb2+ and Cd2+ in water [J]. Journal of Southwest Forestry University (Natural Sciences), 2022, 42(5): 78-86(in Chinese).
[23] 韩剑宏, 郭金越, 张连科, 等. 生物炭/铁酸锰对Zn2+和Cu2+的吸附性能试验 [J]. 水资源保护, 2020, 36(2): 59-64. HAN J H, GUO J Y, ZHANG L K, et al. Adsorption test of biochar-MnFe2O4 to Zn2+ and Cu2+ [J]. Water Resources Protection, 2020, 36(2): 59-64(in Chinese).
[24] ZHAO N, LI B, HUANG H M, et al. Modification of kelp and sludge biochar by TMT-102 and NaOH for cadmium adsorption [J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 101-111. doi: 10.1016/j.jtice.2020.10.036 [25] YANG H I, LOU K Y, RAJAPAKSHA A U, et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars [J]. Environmental Science and Pollution Research, 2018, 25(26): 25638-25647. doi: 10.1007/s11356-017-8551-2 [26] 姜晶, 黄晓月, 白金龙, 等. 高锰酸钾改性生物炭对水中噻虫胺吸附性能及机理 [J]. 环境工程学报, 2022, 16(4): 1175-1185. JIANG J, HUANG X Y, BAI J L, et al. Adsorption of clothianidin by potassium permanganate modified biochar in aqueous solution [J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1175-1185(in Chinese).
[27] 袁广翔, 张玉娟, 戴红旗, 等. 钙离子与钠离子对浆料Zeta电位的影响 [J]. 南京林业大学学报(自然科学版), 2011, 35(3): 119-123. YUAN G X, ZHANG Y J, DAI H Q, et al. Effects of calcium and sodium ions on the Zeta potential of pulp [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2011, 35(3): 119-123(in Chinese).
[28] 仝海娟, 刘丽晓, 范方方, 等. 壳聚糖改性桔子皮生物炭吸附Cr(Ⅵ)的研究 [J]. 化工技术与开发, 2022, 51(9): 54-57. TONG H J, LIU L X, FAN F F, et al. Adsorption of Cr(Ⅵ) with chitosan modified orange peel biochar [J]. Technology & Development of Chemical Industry, 2022, 51(9): 54-57(in Chinese).
[29] SAHA U K, TANIGUCHI S, SAKURAI K. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes [J]. Soil Science Society of America Journal, 2002, 66(1): 117. doi: 10.2136/sssaj2002.1170 [30] 汪怡, 李莉, 宋豆豆, 等. 玉米秸秆改性生物炭对铜、铅离子的吸附特性 [J]. 农业环境科学学报, 2020, 39(6): 1303-1313. WANG Y, LI L, SONG D D, et al. Copper and lead ion adsorption characteristics of modified corn stalk biochars [J]. Journal of Agro-Environment Science, 2020, 39(6): 1303-1313(in Chinese).
[31] 张丹, 高健伟, 马培, 等. 溶液中多种金属离子共存对毛木耳生物吸附能力的影响 [J]. 生态环境, 2008, 17(5): 1822-1827. ZHANG D, GAO J W, MA P, et al. Effect of competitive interference on the metal ions biosorption by Auricularia polytricha mycelial [J]. Ecology and Environment, 2008, 17(5): 1822-1827(in Chinese).
[32] TOVAR-GÓMEZ R, RIVERA-RAMÍREZ D A, HERNÁNDEZ-MONTOYA V, et al. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon [J]. Journal of Hazardous Materials, 2012, 199/200: 290-300. doi: 10.1016/j.jhazmat.2011.11.015 [33] YANG Z J, HOU J, WU J, et al. The effect of carbonization temperature on the capacity and mechanisms of Pb(II) adsorption by microalgae residue-derived biochar [J]. Ecotoxicology and Environmental Safety, 2021, 225: 112750. doi: 10.1016/j.ecoenv.2021.112750 [34] 李杨, 冯涛, 王乔兵. 虾壳生物炭对水溶液中铅离子的吸附研究 [J]. 工业安全与环保, 2020, 46(11): 93-96. doi: 10.3969/j.issn.1001-425X.2020.11.023 LI Y, FENG T, WANG Q B. Adsorption of lead in aqueous solution by crayfish shell-derived biochar [J]. Industrial Safety and Environmental Protection, 2020, 46(11): 93-96(in Chinese). doi: 10.3969/j.issn.1001-425X.2020.11.023
[35] 刘雪平, 杨治广, 王红强, 等. 甲壳素生物炭质对水体中Pb2+的吸附特性 [J]. 湖北农业科学, 2014, 53(3): 549-552. LIU X P, YANG Z G, WANG H Q, et al. Adsorptive behavior of Pb2+ in aqueous solution by chitin-char [J]. Hubei Agricultural Sciences, 2014, 53(3): 549-552(in Chinese).
[36] XIAO Y L, XUE Y W, GAO F, et al. Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 114-121. doi: 10.1016/j.jtice.2017.08.035 [37] 高菲. 小龙虾壳生物炭对水溶液中Pb(Ⅱ)的吸附性能研究[D]. 武汉: 武汉大学, 2017. GAO F. Removal of Pb(Ⅱ) from aqueous solutions by crayfish shell biochar[D]. Wuhan: Wuhan University, 2017 (in Chinese).
[38] PICCIRILLO C, MOREIRA I S, NOVAIS R M, et al. Biphasic apatite-carbon materials derived from pyrolysed fish bones for effective adsorption of persistent pollutants and heavy metals [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4884-4894. doi: 10.1016/j.jece.2017.09.010 [39] WANG W, LIU Y Y, SONG S X, et al. Facile pyrolysis of fishbone charcoal with remarkable adsorption performance towards aqueous Pb (II) [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4621-4629. doi: 10.1016/j.jece.2017.08.052 [40] 刘爽, 汪东风, 徐莹. 磷酸活化茶渣生物炭对铅的吸附性能影响和吸附机理研究 [J]. 中国海洋大学学报(自然科学版), 2022, 52(1): 56-64. doi: 10.16441/j.cnki.hdxb.20210070 LIU S, WANG D F, XU Y. Studies on lead adsorption performance of phosphoric acid activated tea residue biochar and associating mechanism [J]. Periodical of Ocean University of China, 2022, 52(1): 56-64(in Chinese). doi: 10.16441/j.cnki.hdxb.20210070
[41] 张杰, 贺敏婕, 陈可欣, 等. 马缨丹生物炭对水中Pb(Ⅱ)污染的吸附研究 [J]. 现代化工, 2021, 41(7): 122-127. doi: 10.16606/j.cnki.issn0253-4320.2021.07.026 ZHANG J, HE M J, CHEN K X, et al. Preparation of lantana biochar material and its adsorption behavior to Pb2+ in water [J]. Modern Chemical Industry, 2021, 41(7): 122-127(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2021.07.026
[42] AHMED W, XU T W, MAHMOOD M, et al. Nano-hydroxyapatite modified biochar: Insights into the dynamic adsorption and performance of lead (II) removal from aqueous solution[J]. Environmental Research, 2022, 214(Pt 2): 113827. [43] BIAN P Y, LIU Y X, ZHENG X Q, et al. Removal and mechanism of cadmium, lead and copper in water by functional modification of silkworm excrement biochar [J]. Polymers, 2022, 14(14): 2889. doi: 10.3390/polym14142889 [44] DINH V P, NGUYEN D K, LUU T T, et al. Adsorption of Pb(II) from aqueous solution by pomelo fruit peel-derived biochar [J]. Materials Chemistry and Physics, 2022, 285: 126105. doi: 10.1016/j.matchemphys.2022.126105 [45] GAO L, LI Z H, YI W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105602. doi: 10.1016/j.jece.2021.105602 [46] SHEN Y, GUO J Z, BAI L Q, et al. High effective adsorption of Pb(II) from solution by biochar derived from torrefaction of ammonium persulphate pretreated bamboo [J]. Bioresource Technology, 2021, 323: 124616. doi: 10.1016/j.biortech.2020.124616 [47] ZHANG J J, SHAO J G, JIN Q Z, et al. Sludge-based biochar activation to enhance Pb(II) adsorption [J]. Fuel, 2019, 252: 101-108. doi: 10.1016/j.fuel.2019.04.096 [48] DU Q, ZHANG S S, SONG J P, et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions [J]. Journal of Hazardous Materials, 2020, 389: 122115. doi: 10.1016/j.jhazmat.2020.122115 [49] 刘凌沁, 黄亚继, 胡华军, 等. 流化床制备玉米秸秆生物炭的Pb2+吸附特性及机理 [J]. 东南大学学报(自然科学版), 2022, 52(4): 666-675. LIU L Q, HUANG Y J, HU H J, et al. Pb2+ adsorption characteristics and mechanism of corn stalk biochar produced by fluidized bed [J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4): 666-675(in Chinese).
[50] ZHANG R Y, ZHENG X X, CHEN B H, et al. Enhanced adsorption of sulfamethoxazole from aqueous solution by Fe-impregnated graphited biochar [J]. Journal of Cleaner Production, 2020, 256: 120662. doi: 10.1016/j.jclepro.2020.120662 [51] KEARNS J P, WELLBORN L S, SUMMERS R S, et al. 2, 4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data [J]. Water Research, 2014, 62: 20-28. doi: 10.1016/j.watres.2014.05.023 [52] 张淑会, 邵建男, 兰臣臣, 等. 生物质能在炼铁领域应用的研究现状及展望 [J]. 钢铁, 2022, 57(12): 13-22. doi: 10.13228/j.boyuan.issn0449-749x.20220329 ZHANG S H, SHAO J N, LAN C C, et al. Application status and prospect of biomass energy in ironmaking process [J]. Iron & Steel, 2022, 57(12): 13-22(in Chinese). doi: 10.13228/j.boyuan.issn0449-749x.20220329
[53] 魏汝飞, 朱玉龙, 龙红明, 等. 生物质铁矿球团研究现状与展望 [J]. 烧结球团, 2022, 47(1): 29-37. doi: 10.13403/j.sjqt.2022.01.005 WEI R F, ZHU Y L, LONG H M, et al. Research status and prospect of biomass iron ore pellets [J]. Sintering and Pelletizing, 2022, 47(1): 29-37(in Chinese). doi: 10.13403/j.sjqt.2022.01.005