-
近年来,随着化肥过量使用以及工业污染物的排放,导致全球范围内的水源硝酸盐氮(
${\rm{NO}}_3^{-} $ )污染问题严重[1]. 研究表明,水体中的硝酸盐可导致浮游植物富营养化,也可经过还原等反应转化为具有强毒性、致畸性的N-亚硝胺和N-硝酰胺等物质[2],从而对生态环境及人体健康造成危害. 当前,许多国家将硝酸盐氮作为重要的水质指标加以控制,如美国和中国规定饮用水中硝酸盐浓度应不超过10 mg·L−1[3]. 鉴于${\rm{NO}}_3^{-} $ 的高溶解度和化学稳定性,水中${\rm{NO}}_3^{-} $ 较难去除,因此去除水中NO3¯是水处理领域一个亟待解决的问题[4].目前,国内外常用的硝酸盐氮去除技术主要有化学还原法[5]、电化学法[6]、生物法[7]、电渗析法[8]、离子交换法[9]和吸附法[10]等. 相比其它水处理技术,吸附法因其操作简单、效率高、投资少等特点,被认为是去除水中硝酸盐方法之一[11]. 对于吸附技术而言,吸附剂的研发是该方法的核心所在. 当前,改性沸石[12]、活性炭[13]、壳聚糖[14]、树脂[15]、金属有机骨架MOF[16]、SnO2纳米球[17]等天然改性及合成材料作为吸附剂广泛应用于水体中硝酸盐的吸附. 刘栋等[18]从天然沸石的改性方法、吸附机理、吸附影响因素、吸附材料的再生等方面系统阐述了改性沸石作为吸附剂去除水体中硝酸盐. 树脂因其具有机械强度高、无毒无害、稳定性好和可再生等特点,被广泛应用于吸附去除水体中无机离子. 鉴于水中硝酸盐溶解度高且化学性质稳定,不易被去除. 因此,选择高效经济环保的吸附剂成为吸附去除
${\rm{NO}}_3^{-} $ 的热点. 当前,硝酸根去除的研究主要集中在提高${\rm{NO}}_3^{-} $ 的去除效率及其吸附选择性方面,阴离子交换树脂合成制备的报道不多. 例如,Kalaruban等[19]采用金属浸渍改性Dowex 21K XLT阴离子交换树脂,其对硝酸盐的最大吸附量由27.6 mg·g−1N增加75.3 mg·g−1N. Li等[20]合成了一系列具有不同三烷基铵基团的阴离子交换树脂,研究表明,在氯离子、硫酸盐和腐殖酸存在下,长链三烷基胺改性的树脂优先吸附硝酸盐,其中性能最优L20树脂对硝酸盐的吸附量可达145.08 mg·g−1. 目前,关于三羟甲基丙烷三甲基丙烯酸酯合成树脂用于去除饮用水中污染物的研究较少,尤其利用盐酸叔胺基树脂对水中${\rm{NO}}_3^{-} $ 尚未见报道.本研究通过自由基聚合的方法制备了盐酸叔胺树脂(tertiary amine hydrochloride macroprous resin,TAHMR)作为吸附剂[21],研究了树脂用量、溶液pH、共存组分和离子强度等因素对水中
${\rm{NO}}_3^{-} $ 的吸附剂再生性能. 最后,通过傅立叶变换红外光谱(FTIR)和X射线光电子能谱(XPS),对其吸附${\rm{NO}}_3^{-} $ 的机理进行探讨,以期开发新型水处理材料提供基础依据.
盐酸叔胺基大孔树脂对水中硝酸盐的吸附性能
Evaluation of performance of Tertiary amine hydrochloride macroporous resin resins for adsorption behavior of nitrate from aqueous solutions
-
摘要: 硝酸盐是水体中重要的污染物之一. 本文以新型盐酸叔胺大孔树脂(TAHMR)为吸附剂,采用扫描电镜、红外光谱(FTIR)、X射线光电子能谱(XPS)和Zeta电位等手段表征了其结构. 系统研究了TAHMR树脂投加量、溶液pH、离子强度和共存组分等因素对水中
${\rm{NO}}_3^{-} $ 静态吸附性能的影响. 结果表明,TAHMR在较宽的pH4.0—10.0范围内具有良好的吸附性能,当pH为6.0时吸附量最大. 吸附平衡时间在25 min内,${\rm{NO}}_3^{-} $ 在TAHMR上吸附过程符合拟二级动力学吸附模型,Langmuir等温吸附模型可以很好地描述TAHMR对溶液中${\rm{NO}}_3^{-} $ 的吸附过程,最大吸附量为2.94 mmol·g−1(pH=6.0 和25 ℃). 吸附热力学结果表明,在TAHMR上的吸附是一个自发的物理吸附过程,说明吸附过程是自发吸热过程,属于物理吸附. 经FTIR和XPS表征,TAHMR上的叔胺基团参与${\rm{NO}}_3^{-} $ 吸附,并存在离子交换作用力. 脱附再生实验发现,1.0 mmol·L−1 NaOH 溶液脱附效果优于其他脱附液. 具有较强的再生能力,经5次循环后其对${\rm{NO}}_3^{-} $ 的去除率没有明显下降. 因此,TAHMR作为一种经济高效的吸附剂,可为树脂吸附法去除饮用水的${\rm{NO}}_3^{-} $ 提供新的手段.-
关键词:
- 盐酸叔胺离子交换树脂 /
- 硝酸根 /
- 吸附动力学 /
- 竞争吸附 /
- 吸附机制.
Abstract: Nitrate anion (${\rm{NO}}_3^{-} $ ) is one of the main important pollutants in water. A novel type of Tertiary amine hydrochloride macroporous resin (TAHMR)was used as adsorbent to remove nitrate anion from aqueous solutions. The resins were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy(XPS), and Zeta potential. The adsorptive removal of${\rm{NO}}_3^{-} $ from aqueous solution was then investigated as a function of TAHMR resin dosage, solution pH, ionic strength, and co-existing components. The results showed that TAHMR resin exhibits the excellent performance in the pH range of 4.0−10.0 and the maximum adsorption capacity of at pH 6.0. The adsorption equilibrium of TAHMR on${\rm{NO}}_3^{-} $ reached at 25 min, and the adsorption kinetics of${\rm{NO}}_3^{-} $ on TAHMR was best described by the pseudo second-order kinetic model. The adsorption isotherm data fits well the Langmuir model with the calculated maximum monolayer adsorption capacity was 2.94 mmol·g−1 at pH 6.0 and 25 ℃. Thermodynamic calculations show that the adsorption of${\rm{NO}}_3^{-} $ was a spontaneous and endothermic process. The combined results of FTIR and XPS further showed that the amine oxide structure on TAHMR resins involved in the adsorption of${\rm{NO}}_3^{-} $ . Desorption experiments showed that the TAHMR resin could be efficiently regenerated by 1.0 mmol·L−1 NaOH and showed no obvious decrease in adsorption capacity through five regeneration recycles. Therefore, TAHMR, as a cost-effective adsorbent, can provide a new means for the adsorptive removal of${\rm{NO}}_3^{-} $ in drinking water. -
表 1 TAHMR吸附
${\rm{NO}}_3^{-} $ Table 1. Kinetic parameters for adsorption of
${\rm{NO}}_3^{-} $ 模型
Model参数
Parameter${\rm{NO}}_3^{-} $
$C_{{\rm{NO}}_3^{-}} $ 0.4 mmol·L−1 0.8 mmol·L−1 1.6 mmol·L−1 准一级动力学 qe, cal/(mmol·g−1) 7.26× 10−2 7.26× 10−2 2.74× 10−2 k1/min−1 5.29× 10−3 5.29× 10−3 4.70× 10−3 R2 0.730 0.730 0.620 准二级动力学 Qe,cal/(mmol·g−1) 0.31 0.31 0.11 k2/(g·mmol−1·min−1) 9.44×10−3 9.44×10−3 1.89×10−4 R2 0.999 0.999 0.999 颗粒内扩散 Kid,1/(mmol·g−1·min-0.5) 0.02 0.03 0.16 ci,1 3.22 ×10−3 9.96 ×10−4 1.46 ×10−3 R2 0.958 0.993 0.988 kid,2/(mmol·g−1·min-0.5) 0.03 0.03 0.02 ci,2 6.06 ×10−3 6.20 ×10−3 4.49 ×10−1 R2 0.987 0.949 0.983 表 2 TAHMR对NO3¯等温吸附方程拟合参数
Table 2. Adsorption isotherm parameters for adsorption of NO3¯onto the TAHMR at different temperatures
T/K
Langmuir模型
Langmuir modelFreundlich模型
Freundlich modelqmax/(mmol·g−1) KL/(L·mmol−1) R2 1/n KF/[(mmol·g−1)·(L·mmol−1)1/n] R2 288 2.80 0.49 0.996 0.51 0.87 0.980 298 2.94 0.76 0.998 0.45 1.13 0.970 308 3.09 1.24 0.998 0.40 1.43 0.934 表 3 TAHMR吸附
${\rm{NO}}_3^{-} $ Table 3. Thermodynamic parameters for the adsorption of
${\rm{NO}}_3^{-} $ ΔGɵ/(kJ·mol−1) ΔHɵ/(kJ·mol−1) ΔSɵ/(J·(mol·K)−1) R2 15 ℃ 25 ℃ 35 ℃ −2.13 −2.46 −2.92 9.53 40.39 0.990 表 4 吸附剂的理化参数
Table 4. Physicochemical properties of the adsorbents used in this study
吸附剂
Adsorbent粒径/mm
Particle size比表面积/
(m2·g−1)
Specific surface area平均孔径/nm
Average pore diameter孔容/
(cm3·g−1)
Pore volume基本结构
Basic structure交换容量/
(eq·L−1)
Exchange capacity含水量/%
Moisture content功能基团
Functional groupsTAHMR 0.4—0.6 7.9 16.0 0.1 三甲基丙烯酸
三羟甲基丙酯-
丙烯酸二甲氨基
乙酯共聚物~1.8 45 —N+(CH3)3 IRA-410 0.4—0.6 1.3 2.6 7.6×10−4 苯乙烯-二乙
烯苯共聚物≥ 1.25 45—54 (CH3)2N(CH2)2OH D201 0.4—0.7 47.0 274.0 0.2 苯乙烯-二乙
烯苯共聚物≥ 1.2 50—60 —N+(CH3)3 IRN-150 0.3—1.2 1.1 2.2 6.2×10−4 苯乙烯-二乙
烯苯共聚物≥1.2 49—60 — D301 0.4—0.7 47.0 274.7 0.2 聚苯乙烯 1.7—1.3 49—55 —N+(CH3)3 IRA-67 0.5—0.8 >750.0 0.5 — 聚丙烯酸酯
共聚物≥ 1.6 56—62 —N+(CH3)3 表 5 水质主要指标参数
Table 5. Water quality parameters
水样
Water sampleDOC/(mg·L−1) pH 碱度/(mmol·L−1)
Alkalinity电导率/(μS·cm−1)
Electricity conductivity${\rm{NO}}_3^{-} $ ${\rm{SO}}_4^{2-} $ 南丹地下水 3.2 7.23 2.3 323.1 11.7 23.8 龙头水 1.8 7.66 2.1 354.2 5.3 10.6 洪湖水库水 6.7 8.07 3.8 124.3 4.6 29.6 南流江水 6.1 7.95 3.4 206.7 2.7 28.4 -
[1] SINGH S, ANIL A G, KUMAR V, et al. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation[J]. Chemosphere, 2022, 287: 131996. doi: 10.1016/j.chemosphere.2021.131996 [2] BISHAYEE B, CHATTERJEE R P, RUJ B, et al. Strategic management of nitrate pollution from contaminated water using viable adsorbents: An economic assessment-based review with possible policy suggestions[J]. Journal of Environmental Management, 2022, 303: 114081. doi: 10.1016/j.jenvman.2021.114081 [3] HASEENA P V, MADHU G, SAHOO D K. Removal of nitrate nitrogen and ammonia nitrogen from aqueous media using nano biosorbents[D]. Cochin: Cochin University of Science and Technology, 2020. [4] THANGIAH A S. Spectrophotometric determination of sulphate and nitrate in drinking water at Asia-Pacific international university campus, Muak Lek, Thailand[J]. Rasayan Journal of Chemistry, 2019, 12(3): 1503-1508. doi: 10.31788/RJC.2019.1235201 [5] LOPES D V, SILLANPÄÄ M, WOLKERSDORFER C. Nitrate reduction of the siilinjärvi/finland mine water with zero-valent iron and iron waste as alternative iron sources[J]. Mine Water and the Environment, 2020, 39(2): 280-290. doi: 10.1007/s10230-020-00668-9 [6] GAO W C, GAO L L, LI D, et al. Removal of nitrate from water by the electrocatalytic denitrification on the Cu-Bi electrode[J]. Journal of Electroanalytical Chemistry, 2018, 817: 202-209. doi: 10.1016/j.jelechem.2018.04.006 [7] ZHAO Y X, FENG C P, WANG Q H, et al. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor[J]. Journal of Hazardous Materials, 2011, 192(3): 1033-1039. doi: 10.1016/j.jhazmat.2011.06.008 [8] RIVEROS F, GUAJARDO N, VALENZUELA M B, et al. Removal of nitrates from copper-containing aqueous acidic leach solutions by electrodialysis[J]. Mineral Processing and Extractive Metallurgy, 2021, 130(3): 209-217. doi: 10.1080/25726641.2019.1591067 [9] NGUYEN T T, TRAN V A K, TRAN L B, et al. Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water[J]. Chinese Journal of Chemical Engineering, 2021, 32: 378-384. doi: 10.1016/j.cjche.2020.11.032 [10] MAZARJI M, AMINZADEH B, BAGHDADI M, et al. Removal of nitrate from aqueous solution using modified granular activated carbon[J]. Journal of Molecular Liquids, 2017, 233: 139-148. doi: 10.1016/j.molliq.2017.03.004 [11] NASSAR H, ZYOUD A, EL-HAMOUZ A, et al. Aqueous nitrate ion adsorption/desorption by olive solid waste-based carbon activated using ZnCl2[J]. Sustainable Chemistry and Pharmacy, 2020, 18: 100335. doi: 10.1016/j.scp.2020.100335 [12] ZHAN Y H, LIN J W, ZHU Z L. Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1972-1978. [13] ZHANG M, SONG G, GELARDI D L, et al. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water[J]. Water Research, 2020, 186: 116303. doi: 10.1016/j.watres.2020.116303 [14] CHEN C H, GUO Y W, LONG L, et al. Biodegradable chitosan-ethylene glycol hydrogel effectively adsorbs nitrate in water[J]. Environmental Science and Pollution Research, 2020, 27(26): 32762-32769. doi: 10.1007/s11356-020-09438-0 [15] SAMATYA S, KABAY N, YÜKSEL Ü, et al. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins[J]. Reactive and Functional Polymers, 2006, 66(11): 1206-1214. doi: 10.1016/j.reactfunctpolym.2006.03.009 [16] ZHUANG S T, LIU Y, WANG J L. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution[J]. Journal of Hazardous Materials, 2020, 383: 121126. doi: 10.1016/j.jhazmat.2019.121126 [17] 翁明媚. 功能化SnO2空心纳米球的制备及其去除水中硝酸盐研究[D]. 哈尔滨: 黑龙江大学, 2021. WENG M M. Preparation of functionalized SnO2 hollow nanospheres and study on their removal of nitrate from water[D]. Harbin: Helongjiang University, 2021 (in Chinese).
[18] 刘栋, 李永光, 刘佳豪, 等. 改性沸石材料去除水中硝酸盐研究进展[J]. 应用化工, 2021, 50(11): 3192-3198, 3205. doi: 10.3969/j.issn.1671-3206.2021.11.055 LIU D, LI Y G, LIU J H, et al. Research progress of modified zeolite materials for the nitrate removal from aqueous solution[J]. Applied Chemical Industry, 2021, 50(11): 3192-3198, 3205 (in Chinese). doi: 10.3969/j.issn.1671-3206.2021.11.055
[19] KALARUBAN M, LOGANATHAN P, SHIM W G, et al. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies[J]. Separation and Purification Technology, 2016, 158: 62-70. doi: 10.1016/j.seppur.2015.12.022 [20] LI Q M, LU X Y, SHUANG C D, et al. Preferential adsorption of nitrate with different trialkylamine modified resins and their preliminary investigation for advanced treatment of municipal wastewater[J]. Chemosphere, 2019, 223: 39-47. doi: 10.1016/j.chemosphere.2019.02.008 [21] LIU X H, LIU M, DONG H Y, et al. Synthesis of a tertiary amine hydrochloride macroporous resin adsorbent for removal of oxyhalide anions from water: Performance, adsorption mechanism, and toxicity[J]. Journal of Water Process Engineering, 2022, 47: 102659. doi: 10.1016/j.jwpe.2022.102659 [22] 马亚红, 黄婉婷, 刁开盛, 等. 氨化松香基交联聚合树脂对水中诺氟沙星的吸附性能[J]. 环境科学, 2018, 39(1): 161-169. doi: 10.13227/j.hjkx.201701058 MA Y H, HUANG W T, DIAO K S, et al. Evaluation of performance of an aminated rosin-based resin for adsorption of norfloxacin from aqueous solutions[J]. Environmental Science, 2018, 39(1): 161-169 (in Chinese). doi: 10.13227/j.hjkx.201701058
[23] 刘露. 羟基硝酸铜Cu2(OH)3NO3的红外和拉曼光谱分析[D]. 天津: 天津工业大学, 2018. LIU L. Infrared and Raman spectra analysis of copper hydroxynitrate CU2(OH)3NO3[D]. Tianjin: Tianjin Polytechnic University, 2018 (in Chinese).
[24] 张涛. 磁性生物质吸附材料的制备及对硝酸盐氮的吸附研究[D]. 保定: 河北大学, 2022. ZHANG T. Preparation of magnetic biomass adsorption material and study its adsorption for nitrate nitrogen[D]. Baoding: Hebei University, 2022 (in Chinese).
[25] 吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展[J]. 环境化学, 2010, 29(6): 997-1003. WU Z J, LIU H N, ZHANG H F. Research progress on mechanisms about the effect of ionic strength on adsorption[J]. Environmental Chemistry, 2010, 29(6): 997-1003 (in Chinese).
[26] TENG Y, SONG G Q, CHEN R, et al. Carboxymethyl β-cyclodextrin immobilized on hydrated lanthanum oxide for simultaneous adsorption of nitrate and phosphate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104153. doi: 10.1016/j.jtice.2021.11.020 [27] TRAN H N, YOU S J, CHAO H P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2671-2682. doi: 10.1016/j.jece.2016.05.009 [28] WEBER W J, DIGIANO F. A. , Process dynamics in environmental systems(Environmental Science and Technology Series)[M]. New York: Wiley & Sons, 1996. [29] MYERS A L, PRAUSNITZ J M. Thermodynamics of mixed-gas adsorption[J]. AIChE Journal, 1965, 11(1): 121-127. doi: 10.1002/aic.690110125