-
在淡水和海洋生态系统中广泛存在的藻类是食物网基础[1],其光合作用占全球初级生产量近50%[2]。藻类种群形态多样性高[3-4],是最初作为藻类生物学分类的关键依据,后发现藻类形态与光和营养物质吸收存在一定关系[5]。MARGALEF[6]将细胞形态作为藻类季节演替的决定性因子,REYNOLDS[7]阐述了藻类形态与其生态竞争策略间的关系,藻细胞形态成为生态学研究的重要组成部分。物种形态学理论逐渐应用至藻类生态学,为解释和预测物种沿环境梯度的分布提供理论依据[8-9]。不同形态的藻类引发的水质问题不同,微囊藻的代谢产物微囊藻毒素会导致鱼类死亡同时危害人体健康,丝状藻的暴发会造成水华并产生水体嗅味问题[10]。而不同形态的藻类暴发时间同样存在差异,从藻类的形态及光合特性出发亦可解释藻类季节性分布规律。
不同环境条件被认为是影响藻类种内和种间形态多样性的最重要原因[11]。O’FARRELL[12]分析了水下光场对浮游植物的影响,发现在营养饱和条件下,相对较小的单细胞、无鞭毛生物、细丝状生物在光照有限的环境中具有优势,而有鞭毛和较大的生物在光照充足的环境中占优势。NASELLI等[13]观察到Arancio水库中水下有效光照与水库中藻类的主要形态之间存在显著相关性。SU等[14]利用光驱动下藻细胞形态演替模型阐释藻类群落的季节性演替规律。近年来,浮游植物形态特征和功能间的关系得到广泛研究,多项研究表明细胞形态与光环境条件变化有关[15-16]。如富含红色光的水体表面通常由球形形态和较短浮游植物细胞主导,而在总体光照强度较低且富含绿色光的水体深处,细长的杆状细胞和较长的浮游植物细胞分布更多[17]。MONTGOMERY[18]认为在自然环境中较低光强下细胞形态多样性更高,细长杆状细胞多,低光强环境下细胞体积改变引起细胞总光合膜表面积的变化可调节细胞的光合能力以更好适应环境光。SINGH等[19]综述了蓝藻中光信号对细胞形态的影响和对生物生理的潜在影响。
叶绿素荧光是藻细胞光合特性的关键指标,已成为藻类光合作用研究的热点。GENTY等[20]提出可利用基本荧光值来描述植物中光系统Ⅱ (PSII) 所吸收的激发能的分配,BILGER等[21]和WALTERS等[22]进一步研究提出了光合作用参数演算的方程:Y(II)+Y(NO)+Y(NPQ) = 1。其中,Y(II)是衡量照光状态下激发能中用于光化学反应的能量;Y(NO)是PSII处非调节性能量耗散的量子产量,是光损伤的重要指标;Y(NPQ)是PSII处调节性能量耗散的量子产量,为光保护的重要指标。相关研究多集中于区域内藻类整体情况,如李大命等[23]研究太湖蓝藻光合作用活性的时空间分布发现水体表面藻类Y(NPQ)与光强日变化一致,KASHINO等[24]发现巴芬湾水体藻类光合作用策略发现水体表层藻类Y(NPQ)更高。然而,藻细胞形态特征与光合特性间的相关关系研究仍不足,需要进一步确认两者如何共同影响藻类种群的时空分布。
为探明藻类的形态及光合特性如何影响藻类种群的时空分布,本课题组根据藻细胞形态特征拟选择45个藻种开展实验室研究,系统测定不同形态和光合特征参数,分析藻细胞形态与光合特征间的相关关系;结合于桥水库藻种监测数据,分析藻细胞光合特征时空变化规律,探讨基于藻细胞形态及光合特征的藻类种群时空分布机制,以期为湖库水体中有害藻类种群预警防控提供参考。
基于藻细胞形态和光合特征的水源地藻类种群时空分布机制及预警防控
Research on the spatiotemporal distribution mechanism and early warning prevention and control of algal populations in water sources based on algal cell morphology and photosynthetic characteristics
-
摘要: 为明晰藻细胞最基本属性细胞形态在藻种时空分布与竞争演替中扮演的角色,选择来自蓝藻、绿藻等藻门的45个具有不同细胞形态特征的常见藻种,通过实验室分析藻细胞形态特征参数与光合特征间相关关系,并基于于桥水库藻类种群监测数据探究藻类形态时空分布的驱动因素。研究发现,反映藻细胞光合作用过程中捕光潜力的细胞投影面积 (CPA) 是影响藻种光合特性的关键形态学参数;通过构建CPA与光系统II中调节性能量耗散量子产量 (Y(NPQ))、光响应曲线初始斜率 (α) 、最大电子传递速率 (ETRmax) 等光合参数建的关系模型,发现CPA与Y(NPQ)呈现强正相关关系 (R2 = 0.31±0.01,p < 0.001) ,Y(NPQ)是影响藻类种群时空分布的关键参数。于桥水库中藻类种群的综合Y(NPQ)具有显著季节性,由春季到夏季逐渐降低,夏季藻类综合Y(NPQ)最低 (0.057±0.075) ,秋冬季呈现增加趋势,冬季藻类综合Y(NPQ)最高 (0.072±0.062) 。此外,藻类种群综合Y(NPQ)随水深增加呈降低趋势,Y(NPQ)是影响藻类形态空间分布的重要因素。基于于桥水库数据制定了以水体Y(NPQ)为核心的有害藻类预警防控体系,以期为实现针对水源地不同形态有害藻类的预警提供参考。Abstract: The aim of this study is to clarify the role of cell morphology, the most basic property of algal cells, in the spatiotemporal distribution and competitive succession of algae species. Therefore, 45 common algae species with different cell morphological characteristics from alga, such as cyanobacteria and green algae were selected in this study. The correlation between algal cell morphological characteristics and photosynthetic characteristics was analyzed in the laboratory, and the driving factors of the spatial and temporal distribution of algal morphology were explored based on the algae population monitoring data of Yuqiao Reservoir. It was found that the projected cell area (CPA), which reflected the light-catching potential of algal cells during photosynthesis, was a key morphological parameter affecting photosynthetic characteristics of algal species. By constructing the relationship model between CPA and the regulatory energy dissipation quantum yield (Y(NPQ)), initial slope of photoresponse curve (α), maximum electron transport rate (ETRmax) and other photosynthetic parameters in photosystem II, it is found that there is a strong positive correlation between CPA and Y(NPQ) (R2 = 0.31±0.01, p < 0.001), Y(NPQ) was the key parameter affecting the spatial and temporal distribution of algae population. The comprehensive Y(NPQ) of the algae population in Yuqiao Reservoir showed significant seasonality and gradually decreased from spring to summer. The comprehensive Y(NPQ) of the algae population in summer was the lowest (0.057±0.075), and it showed an increasing trend in autumn and winter. The comprehensive Y(NPQ) of the algae population in winter was the highest (0.072±0.062). In addition, Y(NPQ) of algae population decreased with the increase of water depth, and Y(NPQ) was an important factor affecting the spatial distribution of algae morphology. Based on the data of Yuqiao Reservoir, this study developed an early warning and control system for harmful algae with water body Y(NPQ) as the core, in order to realize the early warning of different forms of harmful algae in water sources.
-
Key words:
- morphology /
- photosynthetic parameters /
- algal /
- spatiotemporal distribution
-
表 1 用于光合特性和形态参数测定的纯培养藻类
Table 1. Pure cultured algae for photosynthetic properties and morphological parameter determination
序号 藻株 门 属 1 Pediastrum sp. fa931 绿藻 盘星藻 2 Aerosakkonema funiforme fa722 蓝藻 鞘丝藻 3 Microcystis sp. fa562 蓝藻 微囊藻 4 Chlorella sp. fa5 绿藻 小球藻 5 Ulothrix sp. fa494 绿藻 丝藻 6 Scenedesmus sp. fa489 绿藻 栅藻 7 Peridinium umbonatum var. Inaequale fa329 甲藻 多甲藻 8 Synedra ulna fa2597 硅藻 针杆藻 9 Tribonema aequale fa2214 黄藻 黄丝藻 10 Melosira sp. fa1946 硅藻 直链藻 11 Cryptomonas sp. fa1943 隐藻 隐藻 12 Euglena sp. fa1862 裸藻 裸藻 13 Anabaena sp. fa1391 蓝藻 长孢藻 14 Anabaena sp. fa1389 蓝藻 长孢藻 15 Anabaena sp. fa1385 蓝藻 长孢藻 16 Planktothrix raciborskii fa1372 蓝藻 浮丝藻 17 Planktothrix raciborskii fa1370 蓝藻 浮丝藻 18 Planktothrix agardhii fa1261 蓝藻 阿氏浮颤藻 19 Oscillatoria sp. fa1120 蓝藻 颤藻 20 Phormidium sp. fa1099 蓝藻 席藻 21 Synechococcus sp. fa1061 蓝藻 聚球藻 22 Ankistrodesmus sp. fa1044 绿藻 纤维藻 23 Pseudanabaena sp. 2696 蓝藻 假鱼腥藻 24 Pseudanabaena sp. 2040 蓝藻 假鱼腥藻 25 Pseudanabaena mucicola 675 蓝藻 假鱼腥藻 26 Limnothrix planktonica 667 蓝藻 泽丝藻 27 Limnothrix planktonica 666 蓝藻 泽丝藻 28 Limnothrix planktonica 665 蓝藻 泽丝藻 29 Limnothrix planktonica 664 蓝藻 泽丝藻 30 Pseudanabaena limnetica 639 蓝藻 假鱼腥藻 31 Pseudanabaena cinerea 638 蓝藻 假鱼腥藻 32 Pseudanabaena cinerea 637 蓝藻 假鱼腥藻 33 Pseudanabaena cinerea 636 蓝藻 假鱼腥藻 34 Pseudanabaena catenate 635 蓝藻 假鱼腥藻 35 Pseudanabaena cinerea 634 蓝藻 假鱼腥藻 36 Pseudanabaena limnetica 633 蓝藻 假鱼腥藻 37 Pseudanabaena sp. 632 蓝藻 假鱼腥藻 38 Anabaena sp. 597 蓝藻 长孢藻 39 Limnothrix planktonica 559 蓝藻 泽丝藻 40 Pseudanabaena sp. 558 蓝藻 假鱼腥藻 41 Pseudanabaena sp. 554 蓝藻 假鱼腥藻 42 Oscillatoria sp. 524 蓝藻 颤藻 43 Leptolyngbya sp. 479 蓝藻 细鞘丝藻 44 Anabaena sp. 356 蓝藻 长孢藻 45 Planktothrix sp. 303 蓝藻 浮丝藻 表 2 藻类形态参数分布情况
Table 2. Distribution of algae morphological parameters
藻种 藻类细胞投影面积
CPA/μm2藻类细胞比表面积
SPSA/μm−1藻类细胞扁
平化系数f藻类细胞
重叠系数Pediastrum sp. 78.2±144.2 0.727 8±0.717 9 0.190 2±0.010 5 0 Aerosakkonema funiforme 21.92±9.06 1.239 7±0.352 0 0.146 8±0.025 1 0.55±0.01 Microcystis sp. 10.58±9.20 1.681 1±0.682 3 0.191 1±0.009 8 0 Chlorella sp. 9.14±5.78 1.801 4±0.435 1 0.185 6 0 Ulothrix sp. 49.91±57.99 0.927 8±0.139 5 0.201 1±0.220 6 0.26±0.12 Scenedesmus sp. 18.30±36.59 0.619 5±0.319 5 0.284 4±0.168 3 0 Peridinium umbonatum var. Inaequale 414.00±201.15 0.099 7±0.046 9 0.206 8±0.048 2 0 Synedra ulna 610.72±179.02 0.086 3±1.313 7 0.645 2±0.052 1 0 Tribonema aequale 321.44±221.55 0.376 6±0.076 5 0.228 6±0.074 1 0.26±0.13 Melosira sp. 132.79±82.69 0.631 0±0.045 8 0.307 2±0.110 3 0.19±0.07 Cryptomonas sp. 151.57±102.99 0.197 0±0.070 4 0.279 6±0.075 3 0 Euglena sp. 196.15±81.53 0.703 0±0.308 8 0.512 0±0.126 6 0 Anabaena sp. 31.39±103.12 1.119 2±2.094 0 0.101 6±0.218 4 0.12±0.40 Planktothrix raciborskii 6.99±4.92 2.502 4±3.633 8 0.197 9±0.752 1 0.28±0.12 Planktothrix agardhii 37.31±14.77 0.965 0±0.229 0 0.131 1±0.039 4 0.40±0.11 Oscillatoria sp. 6.35±5.76 2.562 8±0.905 0 0.161 2±0.146 5 0.34±0.17 Phormidium sp. 6.13±4.36 3.601 0±0.361 6 0.335 5±0.120 1 0.12±0.08 Synechococcus sp. 7.21±5.31 3.311 4±1.036 4 0.376 0±0.532 4 0.12±0.21 Ankistrodesmus sp. 67.77±25.77 2.225 6±0.002 4 0.683 9±0.036 6 0 Pseudanabaena sp. 5.94±8.88 2.879 3±1.549 6 0.295 6±1.942 3 0.24±0.13 Pseudanabaena mucicola 5.56±4.51 2.853 2±0.556 5 0.232 2±0.136 4 0.25±0.13 Limnothrix planktonica 8.81±9.02 2.700 8±1.103 9 0.322 8±0.136 6 0.17±0.11 Pseudanabaena limnetica 6.22±7.64 2.816 0±0.672 3 0.221 5±0.067 1 0.23±0.14 Pseudanabaena cinerea 9.20±9.08 2.467 2±0.768 8 0.292 1±0.152 2 0.20±0.14 Pseudanabaena catenate 4.68±2.68 3.107 8±0.533 6 0.322 1±0.060 1 0.25±0.11 Leptolyngbya sp. 2.61±0.67 3.927 8±1.059 1 0.188 1±0.092 3 0.30±0.15 Planktothrix sp. 3.94±2.90 3.396 1±0.698 0 0.329 7±0.131 6 0.25±0.13 -
[1] FALKOWSKI P. The power of plankton[J]. Nature, 2012, 483: S17-S2. doi: 10.1038/483S17a [2] FIELD C B, BEHRENFELD M J, RANDERSON R J, FALKOWSKI P. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281: 237-240. doi: 10.1126/science.281.5374.237 [3] PADISA K J. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—an experimental study[J]. Hydrobiologia, 2003, 500: 243-257. doi: 10.1023/A:1024613001147 [4] NASELLI F L. Shape and size in phytoplankton ecology: do they matter[J]. Hydrobiologia, 2007, 578: 157-161. doi: 10.1007/s10750-006-2815-z [5] LEWIS W M. Surface/volume ratio: implications for phytoplankton morphology[J]. Science, 1976, 192: 885-887. doi: 10.1126/science.192.4242.885 [6] MARGALEF R. Life-forms of phytoplankton as survival alternatives in an unstable environment[J]. Oceanologica Acta, 1978, 1: 493-509. [7] REYNOLDS C S. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory[M]. Oldendorf: Ecology Institute, 1976: 10-20. [8] REYNOLDS C S. Towards a functional classification of the freshwater phytoplankton[J]. Journal of plankton research, 2002, 24: 417-428. doi: 10.1093/plankt/24.5.417 [9] WEITHOFF G. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—a new understanding of phytoplankton ecology? Freshwater Biology, 2003, 48(9): 1669-1675. [10] 刘其根, 陈立侨, 陈勇. 千岛湖水华发生与主要环境因子的相关性分析[J]. 海洋湖沼通报, 2007, 1: 117-124. doi: 10.3969/j.issn.1003-6482.2007.01.017 [11] NASELLI F L. Phytoplankton assemblages in twentyone Sicilian reservoirs: relationships between species composition and environmental factors[J]. Hydrobiologia, 2000, 424: 1-11. doi: 10.1023/A:1003907124528 [12] O’FARRELL I. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland[J]. Hydrobiologia, 2007, 578: 65-77. doi: 10.1007/s10750-006-0434-3 [13] NASELLI F L, Barone R, Chorus I, Kurmayer R. Toxic cyanobacterial blooms in reservoirs under a semiarid mediterranean climate: the magnification of a problem[J]. Environ Toxicol, 2007, 22(4): 399-404. doi: 10.1002/tox.20268 [14] SU M, AN W, YU J, et al. Importance of Underwater Light field in selecting phytoplankton morphology in a eutrophic reservoir[J]. Hydrobiologia, 2014, 724: 203-216. doi: 10.1007/s10750-013-1734-z [15] BENNETT A, BOGORAD L. Complementary chromatic adaptation in a filamentous blue-green algal[J]. Journal of Cell Biology, 1973, 58: 419-435. doi: 10.1083/jcb.58.2.419 [16] BORDOWITZ J R, MONTGOMERY B L. Photoregulation of cellular morphology during complementary chromatic adaptation requires sensorkinase-class protein RcaE in Fremyella diplosiphon[J]. Journal of Bacteriology, 2008, 190: 4069-4074. doi: 10.1128/JB.00018-08 [17] KINGSOLVER J G, HUEY R B. Size, temperature, and fitness: three rules[J]. Evolutionary Ecology Research, 2008, 10(2): 251-268. [18] MONTGOMERY B L. Shedding new light on the regulation of complementary chromatic adaptation[J]. Central European Journal of Biology, 2008, 3: 351-358. [19] SINGH S P, MONTGOMERY B L. Determining cell shape: Adaptive regulation of cyanobacterial cellular differentiation and morphology[J]. Trends in Microbiology, 2011, 19: 278-285. doi: 10.1016/j.tim.2011.03.001 [20] GENTY B, BRIANTAIS J M, BAKER N R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 1989, 990: 87-92. doi: 10.1016/S0304-4165(89)80016-9 [21] BILGER W, BJÖRKMAN O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light‐induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis[J]. Photosynthesis Research, 1990, 25: 173-185. doi: 10.1007/BF00033159 [22] WALTERS R G, HORTON P. Resolution of components of non‐photochemical chlorophyll fluorescence quenching in barley leaves[J]. Photosynthesis Research, 1991, 27: 121-133. doi: 10.1007/BF00033251 [23] 李大命, 阳振, 于洋, 等. 太湖春季和秋季蓝藻光合作用活性研究[J]. 环境科学学报, 2013, 33(11): 3053-3059. doi: 10.13671/j.hjkxxb.2013.11.024 [24] KASHINO Y, KUDOH S, HAYASHI Y, et al. Strategies of phytoplankton to perform effective photosynthesis in the North Water[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2002, 49: 5049-5061. doi: 10.1016/S0967-0645(02)00177-7 [25] ZHOU X S, JI Y L, KONG F Q. Primary study on the stratification characteristics of Yuqiao Reservoir based on site monitoring parameters of water quality[J]. Haihe Water Resources, 2015, 2: 19-21. [26] JIANG X, LI S, YAO S. Phosphorus occurence characteristics and environmental significance of sediments inYuqiao Reservoir, Tianjin[J]. Journal of Lake Sciences, 2018, 30(3): 50-61. [27] LIU C, YU M, ZHOU C. Effects of water transport on the temporal and spatial variation of water quality in bridge reservoirs[J]. Journal of Lake Sciences, 2019, 31(1): 52-64. doi: 10.18307/2019.0105 [28] PRESCOTT G W. Algae of the Western great lakes area: exclusive of desmids and diatoms[M]. Bloomfield Hills: Cranbrook Institute of Science, 1951: 25-36. [29] BELLINGER E G. A key to the identification of the more common algae found in British freshwaters[J]. Water Treatment and Examination, 1974, 23: 76-131. [30] LING H, PETER A T. Australian Freshwater Algae (exclusive of diatoms)[M]. Bibliotheca Phycologica, 2000: 159-164. [31] EILERS P H C, PEETERS J C H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecological Modelling, 1988, 42: 199-215. doi: 10.1016/0304-3800(88)90057-9 [32] PLOUG H, STOLTE W. Diffusive boundary layers, photosynthesis and respiration of the colony-forming plankton algae, Phaeocystis sp[J]. Limnology and Oceanography, 1999, 44: 1949-1958. doi: 10.4319/lo.1999.44.8.1949 [33] MIAO Y, WANG X, GAO L, CHEN Q, QU M. Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves[J]. Journal of Integrative Agriculture, 2016, 15: 87-100. doi: 10.1016/S2095-3119(15)61202-3 [34] LUIMSTRA V M, SCHUURMANS J M, VERSCHOOR A M. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II[J]. Photosynthesis Research, 2018, 138: 177-189. doi: 10.1007/s11120-018-0561-5 [35] HALSTVEDT C B, ROHELACK T, ANDERSEN T, et al. Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors[J]. Journal of Plankton Research, 2007, 29: 471-482. doi: 10.1093/plankt/fbm036 [36] TORRES C D A, LURKING M, MARINHO M M. Assessment of the effects of light availability on growth and competition between strains of Planktothrix agardhii and Microcystis aeruginosa[J]. Microbial Ecology, 2016, 71: 802-813. doi: 10.1007/s00248-015-0719-z [37] SU M, ANDERSEN T, BURCH M, et al. Succession and interaction of surface and subsurface cyanobacterial blooms in oligotrophic/mesotrophic reservoirs: a case study in Miyun Reservoir[J]. Science of the Total Environment, 2019, 64: 1553-1562. [38] SU M, ZHU Y, JIA Z, et al. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir[J]. Water Research, 2021, 192: 116848. doi: 10.1016/j.watres.2021.116848