生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展

王宏展, 吴小伟, 赵晓丽, 王珺瑜, 牛琳. 生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展[J]. 生态毒理学报, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004
引用本文: 王宏展, 吴小伟, 赵晓丽, 王珺瑜, 牛琳. 生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展[J]. 生态毒理学报, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004
Wang Hongzhan, Wu Xiaowei, Zhao Xiaoli, Wang Junyu, Niu Lin. Desorption Behavior and Impacting Factors of Microplastic-loaded Pollutants in Biological Gastrointestinal Tract: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004
Citation: Wang Hongzhan, Wu Xiaowei, Zhao Xiaoli, Wang Junyu, Niu Lin. Desorption Behavior and Impacting Factors of Microplastic-loaded Pollutants in Biological Gastrointestinal Tract: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004

生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展

    作者简介: 王宏展(1997—),女,硕士研究生,研究方向为微塑料环境行为,E-mail: hongzhanwang97@163.com
    通讯作者: 赵晓丽, E-mail: zhaoxiaoli_zxl@126.com
  • 基金项目:

    国家自然科学基金资助项目(41925031)

  • 中图分类号: X171.5

Desorption Behavior and Impacting Factors of Microplastic-loaded Pollutants in Biological Gastrointestinal Tract: A Review

    Corresponding author: Zhao Xiaoli, zhaoxiaoli_zxl@126.com
  • Fund Project:
  • 摘要: 环境中大量分布的微塑料(microplastics, MPs)由于具有粒径小、比表面积大、且对生物体具有毒性危害等特点,因而近年来得到国内外越来越多的研究和关注。环境调查研究表明,环境MPs表面通常含有不同种类和含量的污染物(重金属和有机污染物),这些污染物通过摄食进入生物体胃肠道后在胃肠液作用下会发生解吸,并引起相应的生物毒性效应。本文系统综述了生物体胃肠道中MPs表面负载污染物的解吸行为、机制和潜在影响因素。生物胃肠道系统中MPs表面携带的重金属、有机物以及自身添加剂在胃肠液作用下能够大量解吸。解吸机制方面,胃肠中消化酶能够影响污染物与MPs之间界面结合力(范德华力、静电作用力和氢键等),结合力越小,解吸效率越高。此外,MPs表面负载污染物在胃肠道中的解吸能力也受到塑料性质(结晶度、孔体积和疏水性)和胃肠液性质(消化酶种类、消化液组分和pH)的共同影响,但具体机制当前仍不明确。笔者期望该综述能为进一步评估自然水体中生物体对MPs摄食所引起的生态风险提供科学依据。
  • 加载中
  • Plastic Europe. Plastics—The Facts of 2019: An analysis of European latest plastics production, demand and waste data [R]. Brussels: Plastic Europe, 2019: 1-64
    Mai L, Sun X F, Xia L L, et al. Global riverine plastic outflows [J]. Environmental Science & Technology, 2020, 54(16): 10049-10056
    Tsering T, Sillanpää M, Sillanpää M, et al. Microplastics pollution in the Brahmaputra River and the Indus River of the Indian Himalaya [J]. Science of the Total Environment, 2021, 789: 147968
    Li L, Geng S X, Wu C X, et al. Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin [J]. Environmental Pollution, 2019, 254: 112951
    Desforges J P W, Galbraith M, Dangerfield N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean [J]. Marine Pollution Bulletin, 2014, 79(1-2): 94-99
    Eriksen M, Lebreton L C M, Carson H S, et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250, 000 tons afloat at sea [J]. PLoS One, 2014, 9(12): e111913
    Auta H S, Emenike C U, Fauziah S H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions [J]. Environment International, 2017, 102: 165-176
    Gündoğdu S, Çevik C. Micro- and mesoplastics in Northeast Levantine coast of Turkey: The preliminary results from surface samples [J]. Marine Pollution Bulletin, 2017, 118(1-2): 341-347
    Antunes J, Frias J, Sobral P. Microplastics on the Portuguese coast [J]. Marine Pollution Bulletin, 2018, 131(Pt A): 294-302
    Zhang K, Xiong X, Hu H J, et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges reservoir, China [J]. Environmental Science & Technology, 2017, 51(7): 3794-3801
    Cunningham E M, Ehlers S M, Dick J T A, et al. High abundances of microplastic pollution in deep-sea sediments: Evidence from Antarctica and the southern ocean [J]. Environmental Science & Technology, 2020, 54(21): 13661-13671
    Wang J D, Peng J P, Tan Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals [J]. Chemosphere, 2017, 171: 248-258
    Materic D, Kasper-Giebl A, Kau D, et al. Micro- and nanoplastics in alpine snow: A new method for chemical identification and (semi)quantification in the nanogram range [J]. Environmental Science & Technology, 2020, 54(4): 2353-2359
    Mishra A K, Singh J, Mishra P P. Microplastics in polar regions: An early warning to the world’s pristine ecosystem [J]. Science of the Total Environment, 2021, 784: 147149
    Worm B, Lotze H K, Jubinville I, et al. Plastic as a persistent marine pollutant [J]. Annual Review of Environment and Resources, 2017, 42: 1-26
    Liu X M, Shi H H, Xie B, et al. Microplastics as both a sink and a source of bisphenol A in the marine environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196
    Ma Y N, Huang A N, Cao S Q, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water [J]. Environmental Pollution, 2016, 219: 166-173
    Frias J P G L, Sobral P, Ferreira A M. Organic pollutants in microplastics from two beaches of the Portuguese coast [J]. Marine Pollution Bulletin, 2010, 60(11): 1988-1992
    Velzeboer I, Kwadijk C J A F, Koelmans A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014, 48(9): 4869-4876
    Lo H S, Wong C Y, Tam N F Y, et al. Spatial distribution and source identification of hydrophobic organic compounds (HOCs) on sedimentary microplastic in Hong Kong [J]. Chemosphere, 2019, 219: 418-426
    Yeo B G, Takada H, Yamashita R, et al. PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan [J]. Marine Pollution Bulletin, 2020, 151: 110806
    Jeong C B, Kang H M, Lee Y H, et al. Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption [J]. Environmental Science & Technology, 2018, 52(19): 11411-11418
    Wardrop P, Shimeta J, Nugegoda D, et al. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish [J]. Environmental Science & Technology, 2016, 50(7): 4037-4044
    Besson M, Jacob H, Oberhaensli F, et al. Preferential adsorption of Cd, Cs and Zn onto virgin polyethylene microplastic versus sediment particles [J]. Marine Pollution Bulletin, 2020, 156: 111223
    Tang S, Lin L J, Wang X S, et al. Pb(Ⅱ) uptake onto nylon microplastics: Interaction mechanism and adsorption performance [J]. Journal of Hazardous Materials, 2020, 386: 121960
    Vedolin M C, Teophilo C Y S, Turra A, et al. Spatial variability in the concentrations of metals in beached microplastics [J]. Marine Pollution Bulletin, 2018, 129(2): 487-493
    Tourinho P S, Kocí V, Loureiro S, et al. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation [J]. Environmental Pollution, 2019, 252(Pt B): 1246-1256
    Wang F, Zhang M, Sha W, et al. Sorption behavior and mechanisms of organic contaminants to nano and microplastics [J]. Molecules (Basel, Switzerland), 2020, 25(8): 1827
    Zhou Y F, Yang Y Y, Liu G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene [J]. Water Research, 2020, 184: 116209
    Fred-Ahmadu O H, Bhagwat G, Oluyoye I, et al. Interaction of chemical contaminants with microplastics: Principles and perspectives [J]. Science of the Total Environment, 2020, 706: 135978
    Li J, Zhang K N, Zhang H. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018, 237: 460-467
    Torres F G, Dioses-Salinas D C, Pizarro-Ortega C I, et al. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends [J]. Science of the Total Environment, 2021, 757: 143875
    Rochman C M, Hentschel B T, Teh S J. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments [J]. PLoS One, 2014, 9(1): e85433
    Liu X M, Xu J, Zhao Y P, et al. Hydrophobic sorption behaviors of 17β-estradiol on environmental microplastics [J]. Chemosphere, 2019, 226: 726-735
    Markic A, Gaertner J C, Gaertner-Mazouni N, et al. Plastic ingestion by marine fish in the wild [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(7): 657-697
    Li B W, Liang W, Liu Q X, et al. Fish ingest microplastics unintentionally [J]. Environmental Science & Technology, 2021, 55(15): 10471-10479
    Sequeira I F, Prata J C, da Costa J P, et al. Worldwide contamination of fish with microplastics: A brief global overview [J]. Marine Pollution Bulletin, 2020, 160: 111681
    Li J N, Qu X Y, Su L, et al. Microplastics in mussels along the coastal waters of China [J]. Environmental Pollution, 2016, 214: 177-184
    Zhang C N, Wang S D, Pan Z K, et al. Occurrence and distribution of microplastics in commercial fishes from estuarine areas of Guangdong, South China [J]. Chemosphere, 2020, 260: 127656
    Jaafar N, Azfaralariff A, Musa S M, et al. Occurrence, distribution and characteristics of microplastics in gastrointestinal tract and gills of commercial marine fish from Malaysia [J]. Science of the Total Environment, 2021, 799: 149457
    Ferreira M, Thompson J, Paris A, et al. Presence of microplastics in water, sediments and fish species in an urban coastal environment of Fiji, a Pacific small island developing state [J]. Marine Pollution Bulletin, 2020, 153: 110991
    Nan B X, Su L, Kellar C, et al. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia [J]. Environmental Pollution, 2020, 259: 113865
    Ghosh G C, Akter S M, Islam R M, et al. Microplastics contamination in commercial marine fish from the Bay of Bengal [J]. Regional Studies in Marine Science, 2021, 44: 101728
    Lin F, Zhang Q Z, Xie J, et al. Microplastics in biota and surface seawater from tropical aquaculture area in Hainan, China [J]. Gondwana Research, 2021, 25: 1
    Battaglia F M, Beckingham B A, McFee W E. First report from North America of microplastics in the gastrointestinal tract of stranded bottlenose dolphins (Tursiops truncatus) [J]. Marine Pollution Bulletin, 2020, 160: 111677
    Moore R C, Loseto L, Noel M, et al. Microplastics in beluga whales (Delphinapterus leucas) from the eastern Beaufort Sea [J]. Marine Pollution Bulletin, 2020, 150: 110723
    Stockin K A, Pantos O, Betty E L, et al. Fourier transform infrared (FTIR) analysis identifies microplastics in stranded common dolphins (Delphinus delphis) from New Zealand waters [J]. Marine Pollution Bulletin, 2021, 173: 113084
    Zhang X Y, Luo D Y, Yu R Q, et al. Microplastics in the endangered Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary, China [J]. Environmental Pollution, 2021, 270: 116057
    Moore R C, Noel M, Etemadifar A, et al. Microplastics in beluga whale (Delphinapterus leucas) prey: An exploratory assessment of trophic transfer in the Beaufort Sea [J]. Science of the Total Environment, 2022, 806: 150201
    Wang W F, Ge J, Yu X Y. Bioavailability and toxicity of microplastics to fish species: A review [J]. Ecotoxicology and Environmental Safety, 2020, 189: 109913
    Huang W, Song B, Liang J, et al. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health [J]. Journal of Hazardous Materials, 2021, 405: 124187
    Jeong C B, Won E J, Kang H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus) [J]. Environmental Science & Technology, 2016, 50(16): 8849-8857
    Liao Y L, Yang J Y. Microplastic serves as a potential vector for Cr in an in-vitro human digestive model [J]. The Science of the Total Environment, 2020, 703: 134805
    Holmes L A, Thompson R C, Turner A. In vitro avian bioaccessibility of metals adsorbed to microplastic pellets [J]. Environmental Pollution (Barking, Essex: 1987), 2020, 261: 114107
    Godoy V, Martínez-Férez A, Martín-Lara M Á, et al. Microplastics as vectors of chromium and lead during dynamic simulation of the human gastrointestinal tract [J]. Sustainability, 2020, 12(11): 4792
    Bakir A, Rowland S J, Thompson R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions [J]. Environmental Pollution (Barking, Essex: 1987), 2014, 185: 16-23
    Liu X L, Gharasoo M, Shi Y, et al. Key physicochemical properties dictating gastrointestinal bioaccessibility of microplastics-associated organic xenobiotics: Insights from a deep learning approach [J]. Environmental Science & Technology, 2020, 54(19): 12051-12062
    Campanale C, Massarelli C, Savino I, et al. A detailed review study on potential effects of microplastics and additives of concern on human health [J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1212
    Bridson J H, Gaugler E C, Smith D A, et al. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches [J]. Journal of Hazardous Materials, 2021, 414: 125571
    Coffin S, Lee I, Gan J, et al. Simulated digestion of polystyrene foam enhances desorption of diethylhexyl phthalate (DEHP) and in vitro estrogenic activity in a size-dependent manner [J]. Environmental Pollution, 2019, 246: 452-462
    Coffin S, Huang G Y, Lee I, et al. Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items [J]. Environmental Science & Technology, 2019, 53(8): 4588-4599
    Guo H Y, Zheng X B, Luo X J, et al. Leaching of brominated flame retardants (BFRs) from BFRs-incorporated plastics in digestive fluids and the influence of bird diets [J]. Journal of Hazardous Materials, 2020, 393: 122397
    Guo H Y, Zheng X B, Ru S L, et al. The leaching of additive-derived flame retardants (FRs) from plastics in avian digestive fluids: The significant risk of highly lipophilic FRs [J]. Journal of Environmental Sciences, 2019, 85: 200-207
    Mohamed Nor N H, Koelmans A A. Transfer of PCBs from microplastics under simulated gut fluid conditions is biphasic and reversible [J]. Environmental Science & Technology, 2019, 53(4): 1874-1883
    Sun Y R, Yuan J H, Zhou T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review [J]. Environmental Pollution, 2020, 265: 114864
    Chu S S, He F L, Yu H M, et al. Evaluation of the binding of UFCB and Pb-UFCB to pepsin: Spectroscopic analysis and enzyme activity assay [J]. Journal of Molecular Liquids, 2021, 328: 115511
    Liu P, Wu X W, Liu H Y, et al. Desorption of pharmaceuticals from pristine and aged polystyrene microplastics under simulated gastrointestinal conditions [J]. Journal of Hazardous Materials, 2020, 392: 122346
    Wang Z Y, Zhao J, Song L, et al. Adsorption and desorption of phenanthrene on carbon nanotubes in simulated gastrointestinal fluids [J]. Environmental Science & Technology, 2011, 45(14): 6018-6024
    Wang Y H, Li M, Xu X F, et al. Formation of protein Corona on nanoparticles with digestive enzymes in simulated gastrointestinal fluids [J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2296-2306
    Tan H W, Yue T T, Xu Y, et al. Microplastics reduce lipid digestion in simulated human gastrointestinal system [J]. Environmental Science & Technology, 2020, 54(19): 12285-12294
    Trestrail C, Walpitagama M, Miranda A, et al. Microplastics alter digestive enzyme activities in the marine bivalve, Mytilus galloprovincialis [J]. Science of the Total Environment, 2021, 779: 146418
    Zhao X C, Hao F, Lu D W, et al. Influence of the surface functional group density on the carbon-nanotube-induced α-chymotrypsin structure and activity alterations [J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18880-18890
    Zhao X C, Lu D W, Hao F, et al. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein Corona and the related cytotoxicity [J]. Journal of Hazardous Materials, 2015, 292: 98-107
  • 加载中
计量
  • 文章访问数:  2827
  • HTML全文浏览数:  2827
  • PDF下载数:  115
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-22
王宏展, 吴小伟, 赵晓丽, 王珺瑜, 牛琳. 生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展[J]. 生态毒理学报, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004
引用本文: 王宏展, 吴小伟, 赵晓丽, 王珺瑜, 牛琳. 生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展[J]. 生态毒理学报, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004
Wang Hongzhan, Wu Xiaowei, Zhao Xiaoli, Wang Junyu, Niu Lin. Desorption Behavior and Impacting Factors of Microplastic-loaded Pollutants in Biological Gastrointestinal Tract: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004
Citation: Wang Hongzhan, Wu Xiaowei, Zhao Xiaoli, Wang Junyu, Niu Lin. Desorption Behavior and Impacting Factors of Microplastic-loaded Pollutants in Biological Gastrointestinal Tract: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 64-73. doi: 10.7524/AJE.1673-5897.20220122004

生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展

    通讯作者: 赵晓丽, E-mail: zhaoxiaoli_zxl@126.com
    作者简介: 王宏展(1997—),女,硕士研究生,研究方向为微塑料环境行为,E-mail: hongzhanwang97@163.com
  • 中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012
基金项目:

国家自然科学基金资助项目(41925031)

摘要: 环境中大量分布的微塑料(microplastics, MPs)由于具有粒径小、比表面积大、且对生物体具有毒性危害等特点,因而近年来得到国内外越来越多的研究和关注。环境调查研究表明,环境MPs表面通常含有不同种类和含量的污染物(重金属和有机污染物),这些污染物通过摄食进入生物体胃肠道后在胃肠液作用下会发生解吸,并引起相应的生物毒性效应。本文系统综述了生物体胃肠道中MPs表面负载污染物的解吸行为、机制和潜在影响因素。生物胃肠道系统中MPs表面携带的重金属、有机物以及自身添加剂在胃肠液作用下能够大量解吸。解吸机制方面,胃肠中消化酶能够影响污染物与MPs之间界面结合力(范德华力、静电作用力和氢键等),结合力越小,解吸效率越高。此外,MPs表面负载污染物在胃肠道中的解吸能力也受到塑料性质(结晶度、孔体积和疏水性)和胃肠液性质(消化酶种类、消化液组分和pH)的共同影响,但具体机制当前仍不明确。笔者期望该综述能为进一步评估自然水体中生物体对MPs摄食所引起的生态风险提供科学依据。

English Abstract

参考文献 (73)

返回顶部

目录

/

返回文章
返回