微(纳米)塑料对海洋渔业水域中重要饵料藻类的生态风险评估研究

章敏, 薄军, 郑榕辉, 高富龙, 洪幅坤, 陈锦灿, 方超. 微(纳米)塑料对海洋渔业水域中重要饵料藻类的生态风险评估研究[J]. 生态毒理学报, 2022, 17(6): 287-300. doi: 10.7524/AJE.1673-5897.20211229002
引用本文: 章敏, 薄军, 郑榕辉, 高富龙, 洪幅坤, 陈锦灿, 方超. 微(纳米)塑料对海洋渔业水域中重要饵料藻类的生态风险评估研究[J]. 生态毒理学报, 2022, 17(6): 287-300. doi: 10.7524/AJE.1673-5897.20211229002
Zhang Min, Bo Jun, Zheng Ronghui, Gao Fulong, Hong Fukun, Chen Jincan, Fang Chao. Ecological Risk Assessment of Micro(nano)plastics to Important Bait Algae in Marine Fishery Waters[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 287-300. doi: 10.7524/AJE.1673-5897.20211229002
Citation: Zhang Min, Bo Jun, Zheng Ronghui, Gao Fulong, Hong Fukun, Chen Jincan, Fang Chao. Ecological Risk Assessment of Micro(nano)plastics to Important Bait Algae in Marine Fishery Waters[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 287-300. doi: 10.7524/AJE.1673-5897.20211229002

微(纳米)塑料对海洋渔业水域中重要饵料藻类的生态风险评估研究

    作者简介: 章敏(1997-),女,硕士研究生,研究方向为海洋生物学,E-mail:zhangmin@tio.org.cn
    通讯作者: 方超, E-mail: fangchao@tio.org.cn
  • 基金项目:

    国家重点研发计划项目(2019YFD0901101);厦门青年创新基金项目(3502Z20206099);福建省自然科学基金项目(2021J01506)

  • 中图分类号: X171.5

Ecological Risk Assessment of Micro(nano)plastics to Important Bait Algae in Marine Fishery Waters

    Corresponding author: Fang Chao, fangchao@tio.org.cn
  • Fund Project:
  • 摘要: 微(纳米)塑料(micro(nano)plastics, MNPs)污染已成为水环境中的热点问题,特别是对于有“海洋牧场”之称的海洋渔业水域,由于陆源性塑料垃圾排放、塑料渔具的大量使用以及海上航运等原因,MNPs污染日益严重。饵料藻类作为渔业水域中重要的初级生产者,是维持生态系统稳定的第一道防线,也是污染物在水生食物链中传递的起点,并且响应污染物的毒性效应较为敏感。上述特征使饵料藻类成为开展渔业水域中污染物生态风险评估的理想生物。为评估MNPs对渔业水域中重要饵料藻类的生态风险,本研究通过文献检索分析了其中4门9科12种常见饵料藻类的毒理学研究数据。进一步利用GraphPad Prism 8.0软件计算MNPs对上述饵料藻类的半数有效浓度(median effect concentration, EC50),并运用Rurrlioz软件绘制物种敏感性分布(species sensitivity distribution, SSD)曲线。通过SSD曲线预测了不同环境浓度MNPs对饵料藻类的潜在影响比例(potential affected fractions, PAF),继而对全球13处渔业水域MNPs的生态风险进行评估。结果发现墨西哥湾MNPs的PAF值超过50%;另有7处渔业水域MNPs的PAF值介于5%和20%之间。基于上述结果并考虑到当前海洋塑料垃圾数量有可能被低估,本研究认为未来需要加强对渔业水域中MNPs生态风险的关注。同时,本研究还揭示了当前研究的局限性并对未来渔业水域中MNPs污染的生态风险评估研究提出了几点建议。
  • 加载中
  • Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    da Costa J P, Santos P S M, Duarte A C, et al. (Nano)plastics in the environment-Sources, fates and effects[J]. The Science of the Total Environment, 2016, 566-567:15-26
    Ter Halle A, Ladirat L, Gendre X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11):5668-5675
    Ter Halle A, Jeanneau L, Martignac M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23):13689-13697
    Cole M, Lindeque P, Fileman E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus[J]. Environmental Science & Technology, 2015, 49(2):1130-1137
    Jemec A, Horvat P, Kunej U, et al. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna[J]. Environmental Pollution, 2016, 219:201-209
    Enyoh C E, Verla A W, Verla E N, et al. Airborne microplastics:A review study on method for analysis, occurrence, movement and risks[J]. Environmental Monitoring and Assessment, 2019, 191(11):668
    李道季. 海洋微塑料研究焦点及存在的科学认知误区[J]. 科技导报, 2020, 38(14):46-53

    Li D J. Focus and scientific cognition misconceptions on marine microplastics studies[J]. Science & Technology Review, 2020, 38(14):46-53(in Chinese)

    Mathalon A, Hill P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia[J]. Marine Pollution Bulletin, 2014, 81(1):69-79
    Alexander P, Andrei P, Mikhail M, et al. Eco-legal and economic aspects of developing Malomorsky fishing area of Lake Baikal[J]. Aquaculture and Fisheries, 2021(5):530-534
    夏斌, 杜雨珊, 赵信国, 等. 微塑料在海洋渔业水域中的污染现状及其生物效应研究进展[J]. 渔业科学进展, 2019, 40(3):178-190

    Xia B, Du Y S, Zhao X G, et al. Research progress on microplastics pollution in marine fishery water and their biological effects[J]. Progress in Fishery Sciences, 2019, 40(3):178-190(in Chinese)

    Hidalgo-Ruz V, Gutow L, Thompson R C, et al. Microplastics in the marine environment:A review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6):3060-3075
    Andrady A. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605
    Chen M L, Jin M, Tao P R, et al. Assessment of microplastics derived from mariculture in Xiangshan Bay, China[J]. Environmental Pollution, 2018, 242(Pt B):1146-1156
    Ma J L, Niu X J, Zhang D Q, et al. High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China[J]. The Science of the Total Environment, 2020, 744:140679
    Vázquez-Rowe I, Ita-Nagy D, Kahhat R. Microplastics in fisheries and aquaculture:Implications to food sustainability and safety[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29:100464
    Wang Q, Zhu X P, Hou C W, et al. Microplastic uptake in commercial fishes from the Bohai Sea, China[J]. Chemosphere, 2021, 263:127962
    Xue B M, Zhang L L, Li R L, et al. Underestimated microplastic pollution derived from fishery activities and "hidden" in deep sediment[J]. Environmental Science & Technology, 2020, 54(4):2210-2217
    Zhang F, Xu J Y, Zhu L X, et al. Seasonal distributions of microplastics and estimation of the microplastic load ingested by wild caught fish in the East China Sea[J]. Journal of Hazardous Materials, 2021, 419:126456
    Rahman M M, Nur N, Mahmud-Al-Hasan M, et al. Effects of light and artificial fish shelter (PVC pipe) on some phenotypic traits of stinging catfish (Heteropneustes fossilis Bloch, 1794)[J]. Aquaculture Research, 2020, 51(1):124-134
    Wu P F, Cai Z W, Jin H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 2019, 650:671-678
    Law K L, Thompson R C. Oceans. microplastics in the seas[J]. Science, 2014, 345(6193):144-145
    Kazmiruk T N, Kazmiruk V D, Bendell L I. Abundance and distribution of microplastics within surface sediments of a key shellfish growing region of Canada[J]. PLoS One, 2018, 13(5):e0196005
    Setälä O. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83
    Zhang F, Wang X, Xu J, et al. Food-web transfer of microplastics between wild caught fish and crustaceans in East China Sea[J]. Marine Pollution Bulletin, 2019, 146:173-182
    Mu J L, Zhang S F, Qu L, et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea[J]. Marine Pollution Bulletin, 2019, 143:58-65
    胡习邦, 曾东, 王俊能, 等. 应用物种敏感性分布评估苯胺的水生生态风险[J]. 生态环境学报, 2016, 25(3):471-476

    Hu X B, Zeng D, Wang J N, et al. Assessing aquatic ecological risk of aniline by species sensitivity distributions[J]. Ecology and Environmental Sciences, 2016, 25(3):471-476(in Chinese)

    He W, Kong X Z, Qin N, et al. Combining species sensitivity distribution (SSD) model and thermodynamic index (exergy) for system-level ecological risk assessment of contaminates in aquatic ecosystems[J]. Environment International, 2019, 133(Pt B):105275
    Kim D, Kim L, Kim D, et al. Species sensitivity distributions for ethylparaben to derive protective concentrations for soil ecosystems[J]. Environmental Geochemistry and Health, 2022, 44(8):2435-2449
    Flores N Y, Collas F P L, Mehler K, et al. Assessing habitat suitability for native and alien freshwater mussels in the river Waal (the Netherlands), using hydroacoustics and species sensitivity distributions[J]. Environmental Modeling & Assessment, 2022, 27(1):187-204
    Razak M R, Aris A Z, Zakaria N A C, et al. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia[J]. Ecotoxicology and Environmental Safety, 2021, 211:111905
    《环境科学大辞典》编辑委员会. 环境科学大辞典[M]. 北京:中国环境科学出版社, 1991:10
    Raimondo S, Vivian D N, Delos C, et al. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment[J]. Environmental Toxicology and Chemistry, 2008, 27(12):2599-2607
    Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. The Science of the Total Environment, 2011, 409(18):3309-3324
    Granum E, Raven J A, Leegood R C. How do marine diatoms fix 10 billion tonnes of inorganic carbon per year?[J]. Canadian Journal of Botany, 2005, 83(7):898-908
    Zhang C, Chen X H, Wang J T, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum:Interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220:1282-1288
    赵东会, 赵丽达, 尤宏, 等. 耐高温球等鞭金藻(Isochrysis galbana)藻种的选育与饵料特性初步分析[J]. 海洋与湖沼, 2021, 52(1):206-212

    Zhao D H, Zhao L D, You H, et al. Breeding and feeding characteristics of high-temperature-resistant strains of Isochrysis galbana[J]. Oceanologia et Limnologia Sinica, 2021, 52(1):206-212(in Chinese)

    Chen Y X, Ling Y, Li X Y, et al. Size-dependent cellular internalization and effects of polystyrene microplastics in microalgae P. helgolandica var. tsingtaoensis and S. quadricauda[J]. Journal of Hazardous Materials, 2020, 399:123092
    于童, 白喜云, 解晓晶, 等. 应用GraphPad Prism 5.0 软件计算药物的EC50[J]. 药学进展, 2012(4):180-183 Yu T, Bai X Y, Xie X J, et al. Calculation of in vitro EC50

    of a drug by GraphPad prism 5.0 software[J]. Progress in Pharmaceutical Sciences, 2012(4):180-183(in Chinese)

    van Straalen N M. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc[J]. Environmental Toxicology and Pharmacology, 2002, 11(3-4):167-172
    陈波宇, 郑斯瑞, 牛希成, 等. 物种敏感度分布及其在生态毒理学中的应用[J]. 生态毒理学报, 2010, 5(4):491-497

    Chen B Y, Zheng S R, Niu X C, et al. Species sensitivity distribution and its application in ecotoxicology[J]. Asian Journal of Ecotoxicology, 2010, 5(4):491-497(in Chinese)

    Besseling E, Redondo-Hasselerharm P, Foekema E M, et al. Quantifying ecological risks of aquatic micro- and nanoplastic[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(1):32-80
    陈锦灿, 方超, 郑榕辉, 等. 应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险[J]. 生态毒理学报, 2020, 15(1):242-255

    Chen J C, Fang C, Zheng R H, et al. Assessing ecological risks of micro(nano)plastics to aquatic organisms using species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2020, 15(1):242-255(in Chinese)

    Enders K, Lenz R, Stedmon C A, et al. Abundance, size and polymer composition of marine microplastics ≥ 10μm in the Atlantic Ocean and their modelled vertical distribution[J]. Marine Pollution Bulletin, 2015, 100(1):70-81
    Venâncio C, Ferreira I, Martins M A, et al. The effects of nanoplastics on marine plankton:A case study with polymethylmethacrylate[J]. Ecotoxicology and Environmental Safety, 2019, 184:109632
    Davarpanah E, Guilhermino L. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii[J]. Estuarine, Coastal and Shelf Science, 2015, 167:269-275
    Gambardella C, Morgana S, Bramini M, et al. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels[J]. Marine Environmental Research, 2018, 141:313-321
    Bergami E, Pugnalini S, Vannuccini M L, et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana[J]. Aquatic Toxicology, 2017, 189:159-169
    Casado M P, Macken A, Byrne H J. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery[J]. Environment International, 2013, 51:97-105
    Tunali M, Uzoefuna E N, Tunali M M, et al. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris[J]. Science of the Total Environment, 2020, 743:140479
    冯炘, 秦于杰, 解玉红. 微塑料对念珠藻的影响——以聚苯乙烯为例[J]. 价值工程, 2020, 39(12):263-266

    Feng X, Qin Y J, Xie Y H. Effects of microplastics on freshwater organisms:A case study of polystyrene[J]. Value Engineering, 2020, 39(12):263-266(in Chinese)

    Wang S, Wang Y, Liang Y, et al. The interactions between microplastic polyvinyl chloride and marine diatoms:Physiological, morphological, and growth effects[J]. Ecotoxicology and Environmental Safety, 2020, 203:111000
    Zhu X L, Zhao W H, Chen X H, et al. Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure[J]. Marine Environmental Research, 2020, 158:105005
    Jambeck J R, Geyer R, Wilcox C, et al. Marine pollution. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771
    中华人民共和国生态环境部. 2020年中国海洋生态环境状况公报[R]. 北京:中华人民共和国生态环境部, 2021:34-36
    Shiu R F, Gong G C, Fang M D, et al. Marine microplastics in the surface waters of "pristine" Kuroshio[J]. Marine Pollution Bulletin, 2021, 172:112808
    Wang T, Hu M H, Song L L, et al. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China[J]. Environmental Pollution, 2020, 266(Pt 2):115137
    Roscher L, Fehres A, Reisel L, et al. Microplastic pollution in the Weser Estuary and the German North Sea[J]. Environmental Pollution, 2021, 288:117681
    Eryaşar A R, Gedik K, Şahin A, et al. Characteristics and temporal trends of microplastics in the coastal area in the Southern Black Sea over the past decade[J]. Marine Pollution Bulletin, 2021, 173(Pt A):112993
    Liu Y D, Li Z Z, Jalón-Rojas I, et al. Assessing the potential risk and relationship between microplastics and phthalates in surface seawater of a heavily human-impacted metropolitan bay in Northern China[J]. Ecotoxicology and Environmental Safety, 2020, 204:111067
    Xia B, Sui Q, Sun X M, et al. Microplastic pollution in surface seawater of Sanggou Bay, China:Occurrence, source and inventory[J]. Marine Pollution Bulletin, 2021, 162:111899
    Song Y K, Hong S H, Eo S, et al. Horizontal and vertical distribution of microplastics in Korean coastal waters[J]. Environmental Science & Technology, 2018, 52(21):12188-12197
    Zhang D D, Gui Y Z, Zhou H H, et al. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma'an Archipelago, Shengsi, China[J]. Science of the Total Environment, 2020, 703:134768
    Gurjar U R, Xavier K A M, Shukla S P, et al. Microplastic pollution in coastal ecosystem off Mumbai coast, India[J]. Chemosphere, 2022, 288:132484
    Zhu J M, Zhang Q, Li Y P, et al. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China[J]. The Science of the Total Environment, 2019, 658:62-68
    Qu X Y, Su L, Li H X, et al. Assessing the relationship between the abundance and properties of microplastics in water and in mussels[J]. The Science of the Total Environment, 2018, 621:679-686
    Shruti V C, Pérez-Guevara F, Kutralam-Muniasamy G, et al. The current state of microplastic pollution in the world's largest gulf and its future directions[J]. Environmental Pollution, 2021, 291:118142
    Caldwell D J, Mastrocco F, Hutchinson T H, et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17 alpha-ethinyl estradiol[J]. Environmental Science & Technology, 2008, 42(19):7046-7054
    雷炳莉, 黄圣彪, 王子健. 生态风险评价理论和方法[J]. 化学进展, 2009, 21(S1):350-358

    Lei B L, Huang S B, Wang Z J. Theories and methods of ecological risk assessment[J]. Progress in Chemistry, 2009, 21(S1):350-358(in Chinese)

    Belanger S, Barron M, Craig P, et al. Future needs and recommendations in the development of species sensitivity distributions:Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures[J]. Integrated Environmental Assessment and Management, 2017, 13(4):664-674
    United States Environmental Protection Agency (US EPA). Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses[S]. Washington DC:Office of Research and Development Environmental Research Laboratories, 2010
    Connon R E, Geist J, Werner I. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment[J]. Sensors, 2012, 12(9):12741-12771
    Wheeler J R, Grist E P, Leung K M, et al. Species sensitivity distributions:Data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1-12):192-202
    Selck H, Riemann B, Christoffersen K, et al. Comparing sensitivity of ecotoxicological effect endpoints between laboratory and field[J]. Ecotoxicology and Environmental Safety, 2002, 52(2):97-112
    Forbes T L, Forbes V E. A critique of the use of distribution-based extrapolation models in ecotoxicology[J]. Functional Ecology, 1993, 7(3):249
    张潇峮, 王伟, 罗鸣钟, 等. 三苯基锡和聚苯乙烯微塑料联合暴露对胭脂鱼幼鱼的急性毒性效应[J]. 淡水渔业, 2020, 50(4):33-38

    Zhang X Q, Wang W, Luo M Z, et al. Single and combined effects of (polystyrene) microplastics and triphenyltin on juveniles Myxocryprinus asiaticus[J]. Freshwater Fisheries, 2020, 50(4):33-38(in Chinese)

    Qu H, Ma R X, Barrett H, et al. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis)[J]. Environment International, 2020, 136:105480
    Lewis M, Thursby G. Aquatic plants:Test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA[J]. Environmental Pollution, 2018, 238:270-280
    Heijerick D G, Carey S. The toxicity of molybdate to freshwater and marine organisms. Ⅲ. Generating additional chronic toxicity data for the refinement of safe environmental exposure concentrations in the US and Europe[J]. The Science of the Total Environment, 2017, 609:420-428
    杜建国, 赵佳懿, 陈彬, 等. 应用物种敏感性分布评估重金属对海洋生物的生态风险[J]. 生态毒理学报, 2013, 8(4):561-570

    Du J G, Zhao J Y, Chen B, et al. Assessing ecological risks of heavy metals to marine organisms by species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2013, 8(4):561-570(in Chinese)

    McGlade J, Fahim I S, Green D, et al. From pollution to solution:A global assessment of marine litter and plastic pollution[R]. Nairobi:United Nations Environment Programme, 2021
    Cózar A, Echevarría F, González-Gordillo J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28):10239-10244
    Nolte T M, Hartmann N B, Kleijn J M, et al. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption[J]. Aquatic Toxicology, 2017, 183:11-20
    Cedervall T, Hansson L A, Lard M, et al. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PLoS One, 2012, 7(2):e32254
    洪喻, 郝立翀, 陈足音. 新兴污染物对微藻的毒性作用与机制研究进展[J]. 生态毒理学报, 2019, 14(5):22-45

    Hong Y, Hao L C, Chen Z Y. Research progress on the toxic effects of emerging pollutants on microalgae and the mechanisms[J]. Asian Journal of Ecotoxicology, 2019, 14(5):22-45(in Chinese)

    王素春, 刘光洲, 张欢, 等. 微塑料对微藻的毒性效应研究进展[J]. 海洋环境科学, 2019, 38(2):192-197

    Wang S C, Liu G Z, Zhang H, et al. Toxicity research progress of microplastics on microalgae[J]. Marine Environmental Science, 2019, 38(2):192-197(in Chinese)

    Frydkjær C K, Iversen N, Roslev P. Ingestion and egestion of microplastics by the cladoceran Daphnia magna:Effects of regular and irregular shaped plastic and sorbed phenanthrene[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(6):655-661
    Koelmans A A, Besseling E, Foekema E, et al. Risks of plastic debris:Unravelling fact, opinion, perception, and belief[J]. Environmental Science & Technology, 2017, 51(20):11513-11519
    Massos A, Turner A. Cadmium, lead and bromine in beached microplastics[J]. Environmental Pollution, 2017, 227:139-145
    Liu G Z, Zhu Z L, Yang Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246:26-33
    Prata J C, Lavorante B R B O, Montenegro B S M, et al. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii[J]. Aquatic Toxicology, 2018, 197:143-152
    Yang W F, Gao X X, Wu Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2020, 195:110484
    Huang W, Song B, Liang J, et al. Microplastics and associated contaminants in the aquatic environment:A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health[J]. Journal of Hazardous Materials, 2021, 405:124187
    Lusher A L, Burke A, O'Connor I, et al. Microplastic pollution in the Northeast Atlantic Ocean:Validated and opportunistic sampling[J]. Marine Pollution Bulletin, 2014, 88(1-2):325-333
    Desforges J P, Galbraith M, Dangerfield N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79(1-2):94-99
  • 加载中
计量
  • 文章访问数:  1629
  • HTML全文浏览数:  1629
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-29

微(纳米)塑料对海洋渔业水域中重要饵料藻类的生态风险评估研究

    通讯作者: 方超, E-mail: fangchao@tio.org.cn
    作者简介: 章敏(1997-),女,硕士研究生,研究方向为海洋生物学,E-mail:zhangmin@tio.org.cn
  • 1. 自然资源部第三海洋研究所,海洋生物与生态实验室,厦门 361005;
  • 2. 厦门大学海洋与地球学院,近海海洋环境科学国家重点实验室,厦门 361102
基金项目:

国家重点研发计划项目(2019YFD0901101);厦门青年创新基金项目(3502Z20206099);福建省自然科学基金项目(2021J01506)

摘要: 微(纳米)塑料(micro(nano)plastics, MNPs)污染已成为水环境中的热点问题,特别是对于有“海洋牧场”之称的海洋渔业水域,由于陆源性塑料垃圾排放、塑料渔具的大量使用以及海上航运等原因,MNPs污染日益严重。饵料藻类作为渔业水域中重要的初级生产者,是维持生态系统稳定的第一道防线,也是污染物在水生食物链中传递的起点,并且响应污染物的毒性效应较为敏感。上述特征使饵料藻类成为开展渔业水域中污染物生态风险评估的理想生物。为评估MNPs对渔业水域中重要饵料藻类的生态风险,本研究通过文献检索分析了其中4门9科12种常见饵料藻类的毒理学研究数据。进一步利用GraphPad Prism 8.0软件计算MNPs对上述饵料藻类的半数有效浓度(median effect concentration, EC50),并运用Rurrlioz软件绘制物种敏感性分布(species sensitivity distribution, SSD)曲线。通过SSD曲线预测了不同环境浓度MNPs对饵料藻类的潜在影响比例(potential affected fractions, PAF),继而对全球13处渔业水域MNPs的生态风险进行评估。结果发现墨西哥湾MNPs的PAF值超过50%;另有7处渔业水域MNPs的PAF值介于5%和20%之间。基于上述结果并考虑到当前海洋塑料垃圾数量有可能被低估,本研究认为未来需要加强对渔业水域中MNPs生态风险的关注。同时,本研究还揭示了当前研究的局限性并对未来渔业水域中MNPs污染的生态风险评估研究提出了几点建议。

English Abstract

参考文献 (95)

目录

/

返回文章
返回