苯线磷和甲胺磷对TF-1细胞乙酰胆碱酯酶影响的差异

陈旸升, 马永超, 彭颖蓓, 徐丽, 谢群慧, 赵斌. 苯线磷和甲胺磷对TF-1细胞乙酰胆碱酯酶影响的差异[J]. 生态毒理学报, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001
引用本文: 陈旸升, 马永超, 彭颖蓓, 徐丽, 谢群慧, 赵斌. 苯线磷和甲胺磷对TF-1细胞乙酰胆碱酯酶影响的差异[J]. 生态毒理学报, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001
Chen Yangsheng, Ma Yongchao, Peng Yingbei, Xu Li, Xie Qunhui, Zhao Bin. Differential Effects of Fenamiphos and Methamidophos on Acetylcholinesterase in TF-1 Cells[J]. Asian journal of ecotoxicology, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001
Citation: Chen Yangsheng, Ma Yongchao, Peng Yingbei, Xu Li, Xie Qunhui, Zhao Bin. Differential Effects of Fenamiphos and Methamidophos on Acetylcholinesterase in TF-1 Cells[J]. Asian journal of ecotoxicology, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001

苯线磷和甲胺磷对TF-1细胞乙酰胆碱酯酶影响的差异

    作者简介: 陈旸升(1989-),男,博士,研究方向为环境神经毒理学,E-mail:yschen@rcees.ac.cn
    通讯作者: 谢群慧,E-mail:qhxie@rcees.ac.cn; 
  • 基金项目:

    国家自然科学基金青年项目(22206202);国家自然科学基金重点项目(21836004);国家重点研发计划项目(2018YFA0901100)

  • 中图分类号: X171.5

Differential Effects of Fenamiphos and Methamidophos on Acetylcholinesterase in TF-1 Cells

    Corresponding author: Xie Qunhui, qhxie@rcees.ac.cn
  • Fund Project:
  • 摘要: 有机磷农药(organophosphorus pesticides, OPs)具有较强的神经毒性,主要是通过抑制胆碱能神经传导中的关键酶,乙酰胆碱酯酶(acetylcholinesterase, AChE, EC 3.1.1.7)的活性来实现的。苯线磷和甲胺磷是广泛用于农业生产的OPs,但对它们抑制人AChE活性的机制研究十分有限。本研究应用2种不同的给药方式,包括对培养的细胞和细胞裂解液进行药物处理,明确苯线磷和甲胺磷对人血液白血病细胞系TF-1中AChE酶活性的直接作用和对AChE基因转录表达的影响,从而揭示苯线磷和甲胺磷抑制AChE酶活性的机制与两者的差别。结果表明,高浓度苯线磷(10-3 mol·L-1)处理后,TF-1细胞活力降低,同时诱导细胞凋亡和坏死;而所有被试浓度的甲胺磷对细胞活力均没有明显影响。此外,对于TF-1细胞裂解液中的AChE,苯线磷和甲胺磷短期处理(1 h和5 h)均可产生直接抑制作用,其中苯线磷的抑制作用略强于甲胺磷(孵育1 h,IC50值分别为1.181×10-6 mol·L-1和2.837×10-6 mol·L-1)。对培养细胞的药物处理实验结果显示,苯线磷和甲胺磷(10-6 mol·L-1和10-5 mol·L-1)处理24 h后,均显著降低了TF-1细胞的AChE酶活性,苯线磷的抑制率略高于甲胺磷。而与对酶活性的抑制作用相反,苯线磷和甲胺磷对TF-1中AChEH转录本表达有轻微的上调作用,以甲胺磷更为明显,提示存在反馈调节机制。总结上述结果,我们发现苯线磷对TF-1细胞中AChE的抑制作用总体略强于甲胺磷,而甲胺磷对AChE基因表达的反馈上调作用更明显。从而首次从对AChE酶的直接抑制作用和生物合成影响的不同角度阐述了2个OPs对AChE影响的差异,为进一步的分子机制研究提供了实验数据。
  • 加载中
  • Paz-y-Miño C, Bustamante G, Sánchez M E, et al. Cytogenetic monitoring in a population occupationally exposed to pesticides in Ecuador[J]. Environmental Health Perspectives, 2002, 110(11):1077-1080
    Lima C S, Dutra-Tavares A C, Nunes F, et al. Methamidophos exposure during the early postnatal period of mice:Immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2013, 134(1):125-139
    Ukpebor J, Llabjani V, Martin F L, et al. Sublethal genotoxicity and cell alterations by organophosphorus pesticides in MCF-7 cells:Implications for environmentally relevant concentrations[J]. Environmental Toxicology and Chemistry, 2011, 30(3):632-639
    Emerick G L, Fernandes L S, de Paula E S, et al. In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos:Comparison with mipafox and paraoxon[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2015, 29(5):1079-1087
    Worek F, Thiermann H, Szinicz L, et al. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes[J]. Biochemical Pharmacology, 2004, 68(11):2237-2248
    Xie H Q, Xu H M, Fu H L, et al. AhR-mediated effects of dioxin on neuronal acetylcholinesterase expression in vitro[J]. Environmental Health Perspectives, 2013, 121(5):613-618
    Radić Z, Sit R K, Kovarik Z, et al. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases[J]. The Journal of Biological Chemistry, 2012, 287(15):11798-11809
    Kovarik Z, Bosak A, Sinko G, et al. Exploring the active sites of cholinesterases by inhibition with bambuterol and haloxon[J]. Croatica Chemical Acta, 2003, 76(1):63-67
    Méndez N, Anguas-Cabrera D N, García-de la Parra L M. Effects of methamidophos on sediment processing and body mass of Capitella sp. Y from Estero del Yugo, Mazatlán, Mexico[J]. Journal of Experimental Marine Biology and Ecology, 2008, 361(2):92-97
    do Nascimento C P, Maretto G X, Marques G L M, et al. Methamidophos, an organophosphorus insecticide, induces pro-aggressive behaviour in mice[J]. Neurotoxicity Research, 2017, 32(3):398-408
    Koleli N, Kantar C, Cuvalci U, et al. Movement and adsorption of methamidophos in clay loam and sandy loam soils[J]. International Journal of Environmental Analytical Chemistry, 2006, 86(15):1127-1134
    Akoto O, Gavor S, Appah M K, et al. Estimation of human health risk associated with the consumption of pesticide-contaminated vegetables from Kumasi, Ghana[J]. Environmental Monitoring and Assessment, 2015, 187(5):244
    Wu M L, Deng J F, Tsai W J, et al. Food poisoning due to methamidophos-contaminated vegetables[J]. Journal of Toxicology Clinical Toxicology, 2001, 39(4):333-336
    Freeman S, Kaufman-Shriqui V, Berman T, et al. Children's diets, pesticide uptake, and implications for risk assessment:An Israeli case study[J]. Food and Chemical Toxicology, 2016, 87:88-96
    Silver M K, Shao J, Zhu B Q, et al. Prenatal naled and chlorpyrifos exposure is associated with deficits in infant motor function in a cohort of Chinese infants[J]. Environment International, 2017, 106:248-256
    Mason H J. The recovery of plasma cholinesterase and erythrocyte acetylcholinesterase activity in workers after over-exposure to dichlorvos[J]. Occupational Medicine, 2000, 50(5):343-347
    Zhang Y, Zhu S, Gao Y, et al. A case-control study on correlation of pesticide exposure with childhood acute leukemia[J]. Chinese Journal of Preventive Medicine, 2011, 45(1):41-46
    Ellman G L, Courtney K D, Andres V Jr, et al. A new and rapid colorimetric determination of acetylcholinesterase activity[J]. Biochemical Pharmacology, 1961, 7:88-95
    Zrinka K, Anita B, Goran Š, et al. Exploring the active sites of cholinesterases by inhibition with bambuterol and haloxon[J]. Croatica Chemica Acta, 2003, 76(1):63-67
    Kovarik Z, Radi[KG-*2/9]ć Z, Berman H A, et al. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates[J]. The Biochemical Journal, 2003, 373(Pt 1):33-40
    Al-Sarar A S, Bayoumi A E, Hussein H I, et al. Cytotoxic effects of acephate, ethoprophos, and monocrotophos in CHO-K1 cells[J]. CyTA-Journal of Food, 2015, 13(3):427-433
    Ramirez-Vargas M A, Huerta-Beristain G, Guzman-Guzman I P, et al. Methamidophos induces cytotoxicity and oxidative stress in human peripheral blood mononuclear cells[J]. Environmental Toxicology, 2017, 32(1):147-155
    Olea-Flores M, Parra-Rojas I, Calderón-Aranda E S, et al. Cytotoxicity of methamidophos in MCF10A Cells:Oxidative stress and DNA damage[J]. Toxicology Letters, 2016, 259:S179-S180
    Karami-Mohajeri S, Abdollahi M. Mitochondrial dysfunction and organophosphorus compounds[J]. Toxicology and Applied Pharmacology, 2013, 270(1):39-44
    Saleh A M, Vijayasarathy C, Fernandez-Cabezudo M, et al. Influence of paraoxon (POX) and parathion (PAT) on apoptosis:A possible mechanism for toxicity in low-dose exposure[J]. Journal of Applied Toxicology, 2003, 23(1):23-29
    Lewis J A, Szilagyi M, Gehman E, et al. Distinct patterns of gene and protein expression elicited by organophosphorus pesticides in Caenorhabditis elegans[J]. BMC Genomics, 2009, 10:202
    Li T W, Zhao H T, Hung G C, et al. Differentially expressed genes and pathways induced by organophosphates in human neuroblastoma cells[J]. Experimental Biology and Medicine, 2012, 237(12):1413-1423
    Pope C N. Organophosphorus pesticides:Do they all have the same mechanism of toxicity?[J]. Journal of Toxicology and Environmental Health, Part B, 1999, 2(2):161-181
    Wang C, Zhang N, Li L, et al. Enantioselective interaction with acetylcholinesterase of an organophosphate insecticide fenamiphos[J]. Chirality, 2010, 22(6):612-617
    Worek F, Aurbek N, Koller M, et al. Kinetic analysis of reactivation and aging of human acetylcholinesterase inhibited by different phosphoramidates[J]. Biochemical Pharmacology, 2007, 73(11):1807-1817
    Watanabe W, Yoshida H, Hirose A, et al. Perinatal exposure to insecticide methamidophos suppressed production of proinflammatory cytokines responding to virus infection in lung tissues in mice[J]. BioMed Research International, 2013, 2013:151807
    Araoud M, Neffeti F, Douki W, et al. Toxic effects of methamidophos on paraoxonase 1 activity and on rat kidney and liver and ameliorating effects of alpha-tocopherol[J]. Environmental Toxicology, 2016, 31(7):842-854
  • 加载中
计量
  • 文章访问数:  1198
  • HTML全文浏览数:  1198
  • PDF下载数:  114
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-04-26
陈旸升, 马永超, 彭颖蓓, 徐丽, 谢群慧, 赵斌. 苯线磷和甲胺磷对TF-1细胞乙酰胆碱酯酶影响的差异[J]. 生态毒理学报, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001
引用本文: 陈旸升, 马永超, 彭颖蓓, 徐丽, 谢群慧, 赵斌. 苯线磷和甲胺磷对TF-1细胞乙酰胆碱酯酶影响的差异[J]. 生态毒理学报, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001
Chen Yangsheng, Ma Yongchao, Peng Yingbei, Xu Li, Xie Qunhui, Zhao Bin. Differential Effects of Fenamiphos and Methamidophos on Acetylcholinesterase in TF-1 Cells[J]. Asian journal of ecotoxicology, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001
Citation: Chen Yangsheng, Ma Yongchao, Peng Yingbei, Xu Li, Xie Qunhui, Zhao Bin. Differential Effects of Fenamiphos and Methamidophos on Acetylcholinesterase in TF-1 Cells[J]. Asian journal of ecotoxicology, 2023, 18(4): 231-240. doi: 10.7524/AJE.1673-5897.20230426001

苯线磷和甲胺磷对TF-1细胞乙酰胆碱酯酶影响的差异

    通讯作者: 谢群慧,E-mail:qhxie@rcees.ac.cn; 
    作者简介: 陈旸升(1989-),男,博士,研究方向为环境神经毒理学,E-mail:yschen@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085;
  • 2. 中国科学院大学资源与环境学院, 北京 100049
基金项目:

国家自然科学基金青年项目(22206202);国家自然科学基金重点项目(21836004);国家重点研发计划项目(2018YFA0901100)

摘要: 有机磷农药(organophosphorus pesticides, OPs)具有较强的神经毒性,主要是通过抑制胆碱能神经传导中的关键酶,乙酰胆碱酯酶(acetylcholinesterase, AChE, EC 3.1.1.7)的活性来实现的。苯线磷和甲胺磷是广泛用于农业生产的OPs,但对它们抑制人AChE活性的机制研究十分有限。本研究应用2种不同的给药方式,包括对培养的细胞和细胞裂解液进行药物处理,明确苯线磷和甲胺磷对人血液白血病细胞系TF-1中AChE酶活性的直接作用和对AChE基因转录表达的影响,从而揭示苯线磷和甲胺磷抑制AChE酶活性的机制与两者的差别。结果表明,高浓度苯线磷(10-3 mol·L-1)处理后,TF-1细胞活力降低,同时诱导细胞凋亡和坏死;而所有被试浓度的甲胺磷对细胞活力均没有明显影响。此外,对于TF-1细胞裂解液中的AChE,苯线磷和甲胺磷短期处理(1 h和5 h)均可产生直接抑制作用,其中苯线磷的抑制作用略强于甲胺磷(孵育1 h,IC50值分别为1.181×10-6 mol·L-1和2.837×10-6 mol·L-1)。对培养细胞的药物处理实验结果显示,苯线磷和甲胺磷(10-6 mol·L-1和10-5 mol·L-1)处理24 h后,均显著降低了TF-1细胞的AChE酶活性,苯线磷的抑制率略高于甲胺磷。而与对酶活性的抑制作用相反,苯线磷和甲胺磷对TF-1中AChEH转录本表达有轻微的上调作用,以甲胺磷更为明显,提示存在反馈调节机制。总结上述结果,我们发现苯线磷对TF-1细胞中AChE的抑制作用总体略强于甲胺磷,而甲胺磷对AChE基因表达的反馈上调作用更明显。从而首次从对AChE酶的直接抑制作用和生物合成影响的不同角度阐述了2个OPs对AChE影响的差异,为进一步的分子机制研究提供了实验数据。

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回