动物粪便对紫色土中人类致病菌传播的影响

齐明慧, 程建华, 唐翔宇. 动物粪便对紫色土中人类致病菌传播的影响[J]. 生态毒理学报, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001
引用本文: 齐明慧, 程建华, 唐翔宇. 动物粪便对紫色土中人类致病菌传播的影响[J]. 生态毒理学报, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001
Qi Minghui, Cheng Jianhua, Tang Xiangyu. Effects of Animal Feces on Transmission of Human Pathogenic Bacteria in Purple Soil[J]. Asian journal of ecotoxicology, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001
Citation: Qi Minghui, Cheng Jianhua, Tang Xiangyu. Effects of Animal Feces on Transmission of Human Pathogenic Bacteria in Purple Soil[J]. Asian journal of ecotoxicology, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001

动物粪便对紫色土中人类致病菌传播的影响

    作者简介: 齐明慧(1997—),女,硕士研究生,研究方向为土壤微生物学,E-mail: 2020102022012@stu.zafu.edu.cn
    通讯作者: 程建华, E-mail: chengjh@zafu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(42007361);浙江省自然科学基金资助项目(LD21D010001);浙江农林大学校科研发展基金(2020FR040,2021LFR045)

  • 中图分类号: X171.5

Effects of Animal Feces on Transmission of Human Pathogenic Bacteria in Purple Soil

    Corresponding author: Cheng Jianhua, chengjh@zafu.edu.cn
  • Fund Project:
  • 摘要: 畜禽粪肥进入土壤会促进抗生素耐药性的传播,在传播过程中一旦人类致病菌获得抗生素耐药性,将对人类健康造成巨大威胁。本研究采用高通量测序技术,探究施加猪粪或鸡粪肥后紫色土中致病菌水平及其与抗生素抗性基因的共生关系。结果表明,与未施肥土壤相比,施加粪肥可明显改变土壤细菌群落结构。施加猪粪土壤中的致病菌丰度显著高于施加鸡粪土壤与未施肥土壤。施加粪肥后土壤中致病菌丰度随培养时间增加而减少,可能与土壤生态系统本身的自我净化功能有关。羊布鲁氏杆菌、毕氏梭菌、产气荚膜梭菌与多种抗生素抗性基因显著相关。致病菌相对丰度变化与细菌群落结构有显著相关关系(P<0.01)。细菌群落与土壤理化性质对致病菌相对丰度变化的解释率可达70.6%,可知二者是造成致病菌相对丰度变化的主要因素。综上所述,施加畜禽粪便可增加土壤中致病菌丰度与多样性,同时致病菌与多种抗生素抗性基因存在共生关系。
  • 加载中
  • 仇焕广, 廖绍攀, 井月, 等. 我国畜禽粪便污染的区域差异与发展趋势分析[J]. 环境科学, 2013, 34(7): 2766-2774

    Qiu H G, Liao S P, Jing Y, et al. Regional differences and development tendency of livestock manure pollution in China[J]. Environmental Science, 2013, 34(7): 2766-2774(in Chinese)

    刘春, 刘晨阳, 王济民, 等. 我国畜禽粪便资源化利用现状与对策建议[J]. 中国农业资源与区划, 2021, 42(2): 35-43

    Liu C, Liu C Y, Wang J M, et al. Thecurrent situation of resource utilization of livestock and poultry manure in China and the countermeasures and suggestions[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2): 35-43(in Chinese)

    张克强, 杜连柱, 杜会英, 等. 国内外畜禽养殖粪肥还田利用研究进展[J]. 农业环境科学学报, 2021, 40(11): 2472-2481

    , 2591 Zhang K Q, Du L Z, Du H Y, et al. Application of livestock and poultry waste to agricultural land: A review[J]. Journal of Agro-Environment Science, 2021, 40(11): 2472-2481, 2591(in Chinese)

    Liu S B, Wang J Y, Pu S Y, et al. Impact of manure on soil biochemical properties: A global synthesis[J]. The Science of the Total Environment, 2020, 745: 141003
    Goberna M, Podmirseg S M, Waldhuber S, et al. Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure[J]. Applied Soil Ecology, 2011, 49: 18-25
    Heinonen-Tanski H, Mohaibes M, Karinen P, et al. Methods to reduce pathogen microorganisms in manure[J]. Livestock Science, 2006, 102(3): 248-255
    van Bruggen A H C, Goss E M, Havelaar A, et al. One Health—Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health[J]. Science of the Total Environment, 2019, 664: 927-937
    Fu S Z, Wang Q Y, Wang R, et al. Horizontal transfer of antibiotic resistance genes within the bacterial communities in aquacultural environment[J]. Science of the Total Environment, 2022, 820: 153286
    Udikovic-Kolic N, Wichmann F, Broderick N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15202-15207
    Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098): 1107-1111
    Tamaki H, Wright C L, Li X Z, et al. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform[J]. PLoS One, 2011, 6(9): e25263
    Edgar R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998
    Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267
    Li J Y, Chen Q L, Li H L, et al. Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils[J]. Environmental Pollution, 2020, 266(Pt 2): 115399
    McCarthy G, Lawlor P G, Gutierrez M, et al. Assessing the biosafety risks of pig manure for use as a feedstock for composting[J]. The Science of the Total Environment, 2013, 463-464: 712-719
    Zhu L, Lian Y L, Lin D, et al. Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2022, 437: 129356
    Cheng J H, Tang X Y, Liu C. Bacterial communities regulate temporal variations of the antibiotic resistome in soil following manure amendment[J]. Environmental Science and Pollution Research, 2021, 28(23): 29241-29252
    Fang H, Han L X, Zhang H P, et al. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils[J]. Journal of Hazardous Materials, 2018, 357: 53-62
    Ozlu E, Kumar S. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer[J]. Soil Science Society of America Journal, 2018, 82(5): 1243-1251
    Gautam A, Sekaran U, Guzman J, et al. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure[J]. Environmental and Sustainability Indicators, 2020, 8: 100073
    林曼霞, 邹勇, 孙永学. 室内粪土模型中土霉素对主要反硝化基因转录水平和菌群结构特征的影响[J]. 生态毒理学报, 2018, 13(5): 182-189

    Lin M X, Zou Y, Sun Y X. Effects of oxytetracycline on the transcriptional characteristics of dominant denitrification genes and flora structure characteristics in indoor manure-soil model[J]. Asian Journal of Ecotoxicology, 2018, 13(5): 182-189(in Chinese)

    隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖过程抗生素使用与耐药病原菌及其抗性基因赋存的研究进展[J]. 生态毒理学报, 2015, 10(5): 20-34

    Sui Q W, Zhang J Y, Wei Y S, et al. Veterinary antibiotics use, occurrence of antibiotic resistance pathogen and its antibiotic resistance genes in animal production: An overview[J]. Asian Journal of Ecotoxicology, 2015, 10(5): 20-34(in Chinese)

    Shawver S, Wepking C, Ishii S, et al. Application of manure from cattle administered antibiotics has sustained multi-year impacts on soil resistome and microbial community structure[J]. Soil Biology and Biochemistry, 2021, 157: 108252
    安娜, 高纪超, 韩雅棋, 等. 施粪肥对人参栽培土壤理化性质和真菌群落结构的影响[J]. 吉林农业大学学报, 2019, 41(6): 695-706

    An N, Gao J C, Han Y Q, et al. Effects of manure application on soil physicochemical properties and fungal community structure in ginseng-planted soil[J]. Journal of Jilin Agricultural University, 2019, 41(6): 695-706(in Chinese)

    Pérez-Valera E, de Melo Rangel W, Elhottová D. Cattle manure application triggers short-term dominance of Acinetobacter in soil microbial communities[J]. Applied Soil Ecology, 2022, 176: 104466
    Tulayakul P, Boonsoongnern A, Kasemsuwan S, et al. Comparative study of heavy metal and pathogenic bacterial contamination in sludge and manure in biogas and non-biogas swine farms[J]. Journal of Environmental Sciences (China), 2011, 23(6): 991-997
    Hu Y A, Cheng H F, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation[J]. Environment International, 2017, 107: 111-130
    Moynihan E L, Richards K G, Brennan F P, et al. Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition[J]. Applied Soil Ecology, 2015, 89: 76-84
    理鹏, 吴建强, 沙晨燕, 等. 粪肥和有机肥施用对稻田土壤微生物群落多样性影响[J]. 环境科学, 2020, 41(9): 4262-4272

    Li P, Wu J Q, Sha C Y, et al. Effects of manure and organic fertilizer application on soil microbial community diversity in paddy fields[J]. Environmental Science, 2020, 41(9): 4262-4272(in Chinese)

    Li H Y, Zheng X Q, Tan L, et al. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers[J]. Environmental Research, 2022, 203: 111884
    Chen Q L, An X L, Li H, et al. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?[J]. Soil Biology and Biochemistry, 2017, 114: 229-237
    Pérez-Valera E, Kyselková M, Ahmed E, et al. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications[J]. Scientific Reports, 2019, 9(1): 6760
    Macedo G, van Veelen H P J, Hernandez-Leal L, et al. Targeted metagenomics reveals inferior resilience of farm soil resistome compared to soil microbiome after manure application[J]. The Science of the Total Environment, 2021, 770: 145399
    Zhang H P, Zhang Q K, Song J J, et al. Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils[J]. Journal of Hazardous Materials, 2020, 396: 122618
    Mills M, Lee S, Evans M, et al. Enteric pathogens and carbapenem resistance genes are widespread in the fecal contaminated soils of cattle farms in the United States[J]. Environmental Advances, 2021, 6: 100137
    Zhou R J, Zeng S Z, Hou D W, et al. Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment[J]. Journal of Environmental Sciences (China), 2019, 80: 248-256
    Yin Y, Zhu D, Yang G, et al. Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables[J]. The Science of the Total Environment, 2022, 815: 152851
    邓雯文, 杨盛智, 何雪萍, 等. 牛粪发酵过程中抗生素耐药基因及相关菌群组成变化规律[J]. 生态毒理学报, 2019, 14(2): 153-163

    Deng W W, Yang S Z, He X P, et al. Change of antibiotic resistance genes and bacterial communities during dairy manure composting process[J]. Asian Journal of Ecotoxicology, 2019, 14(2): 153-163(in Chinese)

    Wang F H, Sun R B, Hu H W, et al. The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables[J]. The Science of the Total Environment, 2022, 828: 154463
  • 加载中
计量
  • 文章访问数:  1072
  • HTML全文浏览数:  1072
  • PDF下载数:  83
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-03
齐明慧, 程建华, 唐翔宇. 动物粪便对紫色土中人类致病菌传播的影响[J]. 生态毒理学报, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001
引用本文: 齐明慧, 程建华, 唐翔宇. 动物粪便对紫色土中人类致病菌传播的影响[J]. 生态毒理学报, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001
Qi Minghui, Cheng Jianhua, Tang Xiangyu. Effects of Animal Feces on Transmission of Human Pathogenic Bacteria in Purple Soil[J]. Asian journal of ecotoxicology, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001
Citation: Qi Minghui, Cheng Jianhua, Tang Xiangyu. Effects of Animal Feces on Transmission of Human Pathogenic Bacteria in Purple Soil[J]. Asian journal of ecotoxicology, 2023, 18(2): 44-52. doi: 10.7524/AJE.1673-5897.20220703001

动物粪便对紫色土中人类致病菌传播的影响

    通讯作者: 程建华, E-mail: chengjh@zafu.edu.cn
    作者简介: 齐明慧(1997—),女,硕士研究生,研究方向为土壤微生物学,E-mail: 2020102022012@stu.zafu.edu.cn
  • 1. 浙江农林大学林业与生物技术学院, 省部共建亚热带森林培育国家重点实验室, 杭州 311300;
  • 2. 中国科学院、水利部成都山地灾害与环境研究所, 山地表生过程与生态调控重点实验室, 成都 610041
基金项目:

国家自然科学基金资助项目(42007361);浙江省自然科学基金资助项目(LD21D010001);浙江农林大学校科研发展基金(2020FR040,2021LFR045)

摘要: 畜禽粪肥进入土壤会促进抗生素耐药性的传播,在传播过程中一旦人类致病菌获得抗生素耐药性,将对人类健康造成巨大威胁。本研究采用高通量测序技术,探究施加猪粪或鸡粪肥后紫色土中致病菌水平及其与抗生素抗性基因的共生关系。结果表明,与未施肥土壤相比,施加粪肥可明显改变土壤细菌群落结构。施加猪粪土壤中的致病菌丰度显著高于施加鸡粪土壤与未施肥土壤。施加粪肥后土壤中致病菌丰度随培养时间增加而减少,可能与土壤生态系统本身的自我净化功能有关。羊布鲁氏杆菌、毕氏梭菌、产气荚膜梭菌与多种抗生素抗性基因显著相关。致病菌相对丰度变化与细菌群落结构有显著相关关系(P<0.01)。细菌群落与土壤理化性质对致病菌相对丰度变化的解释率可达70.6%,可知二者是造成致病菌相对丰度变化的主要因素。综上所述,施加畜禽粪便可增加土壤中致病菌丰度与多样性,同时致病菌与多种抗生素抗性基因存在共生关系。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回