短链氯化石蜡对褐牙鲆胚胎发育的毒性效应
Toxic Effects of Short Chain Chlorinated Paraffins on Development of Paralichthys olivaceus Embryos
-
摘要: 氯化石蜡(chlorinated paraffins, CPs)是一系列多氯正构烷烃的复杂混合物,其中短链氯化石蜡(short chain chlorinated paraffins, SCCPs)因具有持久性有机污染物(persistent organic pollutants, POPs)的诸多特性而被国内外学者广泛关注,但目前关于SCCPs毒性效应的报道仍然较少。因此本研究基于SCCPs的海洋污染现状,以褐牙鲆胚胎为实验对象,通过132 h的暴露实验探究了SCCPs的毒性效应。结果表明,SCCPs具有显著的胚胎发育毒性,能够导致胚胎-仔鱼存活率降低,且具有时间效应-剂量效应;能够导致胚胎孵化延迟,高浓度(≥1 000 μg·L-1)还会导致孵化率降低;能够引起胚胎-仔鱼发育畸形,如脊柱弯曲、心包水肿等;能够抑制仔鱼生长等。此外,SCCPs还能诱导胚-仔鱼发生氧化应激反应,实验组仔鱼的超氧化物歧化酶活性、过氧化氢酶活性及丙二醛的含量均显著高于对照组(P<0.05),抗氧化酶基因sod、cat的相对表达量也要高于对照组。随着SCCPs浓度增加,实验组仔鱼超氧化物歧化酶、过氧化氢酶活性呈下降趋势,清除活性氧自由基的能力逐渐下降,导致机体发生严重的脂质过氧化作用,10 000 μg·L-1实验组仔鱼中观察到丙二醛含量接近于对照组的3倍。研究结果揭示了SCCPs对海洋生物早期发育阶段的生态毒性,将为SCCPs的环境风险评估提供理论依据。Abstract: Chlorinated paraffins (CPs) are a complex mixture of a series of polychlorinated n-alkanes. Of these, short chain chlorinated paraffins (SCCPs) received a wide interest from domestic and international scholars for their numerous properties as persistent organic pollutants (POPs), but few reports on the toxic effects of SCCPs have been published. In this study, the toxic effects of SCCPs were investigated in Paralichthys olivaceus embryos through 132 h exposure experiment, based on the current status of marine pollution. The results showed that SCCPs had significant embryonic developmental toxicity, including lower embryo-larvae survival with a time-dose effect; a delay in embryo hatching and a decrease in hatching rate at high concentrations (≥1 000 μg·L-1); developmental malformations of embryo-larvae, such as spinal curvature and pericardial edema; and inhibition of larvae growth. In addition, oxidative stress was induced in embryo-larvae by SCCPs exposure. The superoxide dismutase (SOD) activity, catalase activity (CAT) and malondialdehyde (MDA) content were significantly higher (P<0.05) and the relative expression of antioxidant enzyme genes sod and cat were also relatively higher in the experimental group of littermates than in the control group. With the increasing concentration of SCCPs, the SOD and CAT activities of the experimental group were on a decreasing trend, indicating a gradual decrease in the ability to scavenge reactive oxygen radicals. This led to severe lipid peroxidation in the organism, and the MDA content observed in the 10 000 μg·L-1 experimental group of littermates was close to three times that of the control group. The results reveal the ecotoxicity induced by SCCPs on the early developmental stages of marine organisms, which will provide a theoretical basis for the environmental risk assessment of SCCPs.
-
Environment Canada and Health Canada. Priority substances list assessment report[R]. Ottawa, Ontario: Environment Canada and Health Canada, 1993: 56 Reth M, Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins[J]. Analytical and Bioanalytical Chemistry, 2004, 378(7): 1741-1747 Zhao N, Cui Y, Wang P W, et al. Short-chain chlorinated paraffins in soil, sediment, and seawater in the intertidal zone of Shandong Peninsula, China: Distribution and composition[J]. Chemosphere, 2019, 220: 452-458 Bayen S, Obbard J P, Thomas G O. Chlorinated paraffins: A review of analysis and environmental occurrence[J]. Environment International, 2006, 32(7): 915-929 Feo M L, Eljarrat E, Barceló D, et al. Occurrence, fate and analysis of polychlorinated n-alkanes in the environment[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6): 778-791 郑结斌. 中国氯化石蜡行业现状及发展分析[J]. 中国氯碱, 2021(1): 22-24 Fiedler H. Short-chain Chlorinated Paraffins: Production, Use and International Regulations[M]// Boer J. Chlorinated Paraffins. Springer Link, 2010: 1-40 Yuan S C, Wang M, Lv B, et al. Transformation pathways of chlorinated paraffins relevant for remediation: A mini-review[J]. Environmental Science and Pollution Research International, 2021, 28(8): 9020-9028 Huang Y M, Chen L G, Jiang G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. The Science of the Total Environment, 2019, 671: 262-269 Ma X D, Zhang H J, Wang Z, et al. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J]. Environmental Science & Technology, 2014, 48(10): 5964-5971 崔阳. 山东半岛沿岸短链氯化石蜡的分布、组成、迁移规律及其影响因素[D]. 济南: 山东大学, 2018: 28-35 Yuan B, Wang T, Zhu N L, et al. Short chain chlorinated paraffins in mollusks from coastal waters in the Chinese Bohai Sea[J]. Environmental Science & Technology, 2012, 46(12): 6489-6496 Zeng L X, Zhao Z S, Li H J, et al. Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea: Influencing factors, transport and implications[J]. Environmental Science & Technology, 2012, 46(18): 9898-9906 Persistent Organic Pollutants Review Committee. Recommendation by the Persistent Organic Pollutants Review Committee to list short-chain chlorinated paraffins in annex A to the convention[C]. Stockholm: United Nations Environment Programme, 2017: 35-36 Wang X, Zhu J B, Xue Z M, et al. The environmental distribution and toxicity of short-chain chlorinated paraffins and underlying mechanisms: Implications for further toxicological investigation[J]. The Science of the Total Environment, 2019, 695: 133834 Ali T E S, Legler J. Overview of the Mammalian and Environmental Toxicity of Chlorinated Paraffins[M]// Boer J. Chlorinated Paraffins. Springer Link, 2010: 135-154 Bucher J R, Alison R H, Montgomery C A, et al. Comparative toxicity and carcinogenicity of two chlorinated paraffins in F344/N rats and B6C3F1 mice[J]. Toxicological Sciences, 1987, 9(3): 454-468 Burýšková B, Blaha L, Vršková D, et al. Sublethal toxic effects and induction of gGutathione S-transferase by short-chain chlorinated paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis frog embryos[J]. Acta Veterinaria Brno, 2006, 75(1): 115-122 Cooley H M, Fisk A T, Wiens S C, et al. Examination of the behavior and liver and thyroid histology of juvenile rainbow trout (Oncorhynchus mykiss) exposed to high dietary concentrations of C(10)-, C(11)-, C(12)- and C(14)-polychlorinated n-alkanes[J]. Aquatic Toxicology, 2001, 54(1-2): 81-99 Liu L H, Li Y F, Coelhan M, et al. Relative developmental toxicity of short-chain chlorinated paraffins in zebrafish (Danio rerio) embryos[J]. Environmental Pollution, 2016, 219: 1122-1130 刘丽华, 马万里, 刘丽艳, 等. 短链氯化石蜡C10(50.2% Cl)对斑马鱼胚胎的发育毒性[J]. 哈尔滨工业大学学报, 2016, 48(8): 127-130 , 140 Liu L H, Ma W L, Liu L Y, et al. Study on developmental toxicity of short-chain chlorinated paraffins C10(50.2% Cl) in zebrafish embryos[J]. Journal of Harbin Institute of Technology, 2016, 48(8): 127-130, 140(in Chinese)
Ren X Q, Zhang H J, Geng N B, et al. Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short-chain chlorinated paraffins (SCCPs) exposure[J]. Science of the Total Environment, 2018, 622-623: 214-221 Geng N B, Zhang H J, Zhang B Q, et al. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells[J]. Environmental Science & Technology, 2015, 49(5): 3076-3083 王菲迪, 张海军, 耿柠波, 等. 短链氯化石蜡(SCCPs)和多环芳烃(PAHs)联合暴露对HepG2细胞抗氧化系统的影响[J]. 生态毒理学报, 2018, 13(5): 218-225 Wang F D, Zhang H J, Geng N B, et al. Combined effects of SCCPs and PAHs on the antioxidant system in HepG2 cells[J]. Asian Journal of Ecotoxicology, 2018, 13(5): 218-225(in Chinese)
Chen J W, Ni B B, Li B, et al. The responses of autophagy and apoptosis to oxidative stress in nucleus pulposus cells: Implications for disc degeneration[J]. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2014, 34(4): 1175-1189 Lepage T, Sardet C, Gache C. Spatial expression of the hatching enzyme gene in the sea urchin embryo[J]. Developmental Biology, 1992, 150(1): 23-32 Araki K, Fujikawa N, Nakayama I, et al. Early expression of a hatching enzyme gene in Masu salmon (Oncorhynchus masou) embryos[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 53(3): 509-512 赵君. 中国对虾(Penaeus chinensis)孵化酶的分离纯化、性质及其鉴定研究[D]. 青岛: 中国海洋大学, 2007: 14-18 Sano K, Inohaya K, Kawaguchi M, et al. Purification and characterization of zebrafish hatching enzyme—An evolutionary aspect of the mechanism of egg envelope digestion[J]. The FEBS Journal, 2008, 275(23): 5934-5946 Samaee S M, Rabbani S, Jovanović B, et al. Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: A comparison between two different classes of hatching-derived variables[J]. Ecotoxicology and Environmental Safety, 2015, 116: 121-128 Hendon L A. Cross-talk between pyrene and hypoxia signaling pathways in embryonic Cyprinodon variegatus[D]. Hattiesburg: University of Southern Mississippi, 2006: 19-25 Fisk A, Tomy G, Muir D. Toxicity of C 10-, C 11-, C 12-, and C 14- polychlorinated alkanes to Japanese medaka (Oryzias latipes) embryos[J]. Environmental Toxicology and Chemistry, 1999, 18(12): 2894-2902 Vieira R, Venâncio C A S, Félix L M. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development[J]. Environmental Science and Pollution Research, 2020, 27(17): 21174-21187 Sultana Z, Khan M M, Mostakim G M, et al. Studying the effects of profenofos, an endocrine disruptor, on organogenesis of zebrafish[J]. Environmental Science and Pollution Research International, 2021, 28(16): 20659-20667 Hill A J, Bello S M, Prasch A L, et al. Water permeability and TCDD-induced edema in zebrafish early-life stages[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2004, 78(1): 78-87 Carbajal-Hernández A L, Valerio-García R C, Martínez-Ruíz E B, et al. Maternal-embryonic metabolic and antioxidant response of Chapalichthys pardalis (Teleostei: Goodeidae) induced by exposure to 3,4-dichloroaniline[J]. Environmental Science and Pollution Research, 2017, 24(21): 17534-17546 Berntssen M H G, Aatland A, Handy R D. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr[J]. Aquatic Toxicology, 2003, 65(1): 55-72 Verlecar X N, Jena K B, Chainy G B N. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures[J]. Chemosphere, 2008, 71(10): 1977-1985 周启星. 生态毒理学[M]. 北京: 科学出版社, 2004: 28-30 Atli G, Alptekin O, Tükel S, et al. Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2006, 143(2): 218-224 Larose C, Canuel R, Lucotte M, et al. Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2008, 147(2): 139-149 Guilherme S, Válega M, Pereira M E, et al. Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure—Relationship with mercury accumulation and implications for public health[J]. Marine Pollution Bulletin, 2008, 56(5): 845-859 Liang X M, Wang F, Li K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): Developmental toxicity, oxidative stress and immunotoxicity[J]. Fish & Shellfish Immunology, 2020, 96: 262-269 Yang W K, Chiang L F, Tan S W, et al. Environmentally relevant concentrations of di(2-ethylhexyl)phthalate exposure alter larval growth and locomotion in medaka fish via multiple pathways[J]. The Science of the Total Environment, 2018, 640-641: 512-522 李磊, 蒋玫, 王云龙. 邻苯二甲酸二丁酯和邻苯二甲酸二辛酯对大黄鱼受精卵及仔鱼的急性毒性效应[J]. 海洋渔业, 2019, 41(3): 346-353 Li L, Jiang M, Wang Y L. Toxic effects of DBP and DOP on early life stage of Pseudosciaena crocea[J]. Marine Fisheries, 2019, 41(3): 346-353(in Chinese)
王艳, 马泽民, 吴石金. 3种PAEs对蚯蚓的毒性作用和组织酶活性影响的研究[J]. 环境科学, 2014, 35(2): 770-779 Wang Y, Ma Z M, Wu S J. Study on the effect of enzymatic activity and acute toxicity of three PAEs on Eisenia foetida[J]. Environmental Science, 2014, 35(2): 770-779(in Chinese)
计量
- 文章访问数: 1246
- HTML全文浏览数: 1246
- PDF下载数: 151
- 施引文献: 0