地下水砷污染形成机制研究进展

罗婷, 景传勇. 地下水砷污染形成机制研究进展[J]. 环境化学, 2011, 30(1): 77-83.
引用本文: 罗婷, 景传勇. 地下水砷污染形成机制研究进展[J]. 环境化学, 2011, 30(1): 77-83.
LUO Ting, JING Chuanyong. RESEARCH PROGRESS ON MECHANISMS OF ARSENIC MOBILIZATION IN GROUNDWATER[J]. Environmental Chemistry, 2011, 30(1): 77-83.
Citation: LUO Ting, JING Chuanyong. RESEARCH PROGRESS ON MECHANISMS OF ARSENIC MOBILIZATION IN GROUNDWATER[J]. Environmental Chemistry, 2011, 30(1): 77-83.

地下水砷污染形成机制研究进展

RESEARCH PROGRESS ON MECHANISMS OF ARSENIC MOBILIZATION IN GROUNDWATER

  • 摘要: 地下水砷污染是全球饮用水的主要威胁之一,目前全世界有超过一亿人受砷污染地下水问题的困扰.因此,深入研究地下水砷污染的形成机制,对预测地下水中砷的分布及解决地下水砷污染问题具有重要意义.本文在归纳总结前人相关研究的基础上,综述了关于地下水砷污染形成机制的不同解释及最新研究进展,重点阐述了铁氧化物还原溶解释放砷机制,并详细讨论了在此机制中微生物和有机碳等因素的重要作用.
  • 加载中
  • [1] Fendorf S, Michael H A, van Geen A. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982): 1123-1127
    [2] Jing C Y, Liu S Q, Meng X Q. Arsenic remobilization in water treatment adsorbents under reducing conditions: Part I[J]. Incubation study Sci Total Environ, 2008, 389(1):188-194
    [3] Meliker J R, Wahl R L, Cameron L L, et al. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis[J]. Environmental Health, 2007, 6: 4
    [4] Wasserman G A, Liu X H, Parvez F, et al. Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh[J]. Environ Health Perspect, 2004, 112(13):1329-1333
    [5] Polizzotto M L, Kocar B D, Benner S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Nature, 2008, 454(7203):505-508
    [6] Sengupta S, McArthur J M, Sarkar A, et al. Do ponds cause arsenic-pollution of groundwater in the Bengal basin? An answer from West Bengal[J]. Environ Sci Technol, 2008, 42(14):5156-5164
    [7] Neumann R B, Ashfaque K N, Badruzzaman A B, et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh[J]. Nature Geoscience, 2010, 3(1):46-52
    [8] Macur R E, Jackson C R, Botero L M, et al. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil[J]. Environ Sci Technol, 2004, 38(1):104-111
    [9] Sutton N B, van der Kraan G M, van Loosdrecht M C M, et al. Characterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh[J]. Water Res, 2009, 43(6):1720-1730
    [10] van Geen A, Zheng Y, Goodbred S, et al. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin[J]. Environ Sci Technol, 2008, 42(7):2283-2288
    [11] Lowers H A, Breit G N, Foster A L, et al. Arsenic incorporation into authigenic pyrite, Bengal basin sediment, Bangladesh[J]. Geochim Cosmochim Acta, 2007, 71(11):2699-2717
    [12] Zhao H S, Stanforth R. Competitive adsorption of phosphate and arsenate on goethite[J]. Environ Sci Technol, 2001, 35(24):4753-4757
    [13] Acharyya S K, Chakraborty P, Lahiri S, et al. Arsenic poisoning in the Ganges delta[J]. Nature, 1999, 401(6753):545-545
    [14] McArthur J M, Ravenscroft P, Safiulla S, et al. Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh[J]. Water Resour Res, 2001, 37(1):109-117
    [15] Appelo C A J, Van der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environ Sci Technol, 2002, 36(14):3096-3103
    [16] Anawar H M, Akai J, Sakugawa H. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater[J]. Chemosphere, 2004, 54(6):753-762
    [17] Radu T, Subacz J L, Phillippi J M, et al. Effects of dissolved carbonate on arsenic adsorption and mobility[J]. Environ Sci Technol, 2005, 39(20): 7875-7882
    [18] Meng X G, Bang S, Korfiatis G P. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride[J]. Water Res, 2000, 34(4): 1255-1261
    [19] Fuller C C, Davis J A, Waychunas G A. Surface-chemistry of ferrihydrite.2.Kinetics of arsenate adsorption and coprecipitation[J]. Geochim Cosmochim Acta, 1993, 57(10):2271-2282
    [20] Acharyya S K, Lahiri S, Raymahashay B C, et al. Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation[J]. Environ Geol, 2000, 39(10):1127-1137
    [21] Kinniburgh D G, Smedley P L. Arsenic contamination of groundwater in Bangladesh.Technical Report WC/00/19. British Geological Survey: Keyworth U K, 2001:1-4
    [22] Tufano K J, Reyes C, Saltikov C W, et al. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction[J]. Environ Sci Technol, 2008, 42(22):8283-8289
    [23] Anawar H M, Komaki K, Akai J, et al. Diagenetic control on arsenic partitioning in sediments of the Meghna River delta, Bangladesh[J]. Environ Geol, 2002, 41(7):816-825
    [24] Oh J I, Yamamoto K, Kitawaki H, et al. Application of low-pressure nanofiltration coupled with a bicycle pump for the treatment of arsenic-contaminated groundwater[J]. Desalination, 2000, 132(1/3):307-314
    [25] Chowdhury T R, Basu G K, Mandal B K, et al. Arsenic poisoning in the Ganges delta[J]. Nature, 1999, 401(6753):545-546
    [26] Swartz C H, Blute N K, Badruzzman B, et al. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization[J]. Geochim Cosmochim Acta, 2004, 68(22):4539-4557
    [27] Harvey C F, Swartz C H, Badruzzaman A B M, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science, 2002, 298(5598):1602-1606
    [28] Savage K S, Tingle T N, O'Day P A, et al. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California[J]. Appl Geochem, 2000, 15(8):1219-1244
    [29] Islam F S, Gault A G, Boothman C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments[J]. Nature, 2004, 430(6995):68-71
    [30] Campbell K M, Malasarn D, Saltikov C W, et al. Simultaneous microbial reduction of iron(Ⅲ) and arsenic(Ⅴ) in suspensions of hydrous ferric oxide[J]. Environ Sci Technol, 2006, 40(19):5950-5955
    [31] Van Geen A, Rose J, Thoral S, et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part Ⅱ: Evidence from sediment incubations[J]. Geochim Cosmochim Acta, 2004, 68(17):3475-3486
    [32] Oremland R S, Stolz J F. The ecology of arsenic[J]. Science, 2003, 300(5621):939-944
    [33] Kocar B D, Herbel M J, Tufano K J, et al. Contrasting effects of dissimilatory iron(Ⅲ) and arsenic(Ⅴ) reduction on arsenic retention and transport[J]. Environ Sci Technol, 2006, 40(21):6715-6721
    [34] Tufano K J, Fendorf S. Confounding impacts of iron reduction on arsenic retention[J]. Environ Sci Technol, 2008, 42(13):4777-4783
    [35] Polizzotto M L, Harvey C F, Li G C, et al. Solid-phases and desorption processes of arsenic within Bangladesh sediments[J]. Chem Geol, 2006, 228(1/3):97-111
    [36] Farooq S H, Chandrasekharam D, Berner Z, et al. Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta[J]. Water Res, 2010:1-14
    [37] Rowland H A L, Pederick R L, Polya D A, et al. The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers[J]. Cambodia Geobiology, 2007, 5(3):281-292
    [38] Mladenov N, Zheng Y, Miller M P, et al. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers[J]. Environ Sci Technol, 2010, 44(1):123-128
    [39] McArthur J M, Banerjee D M, Hudson-Edwards K A, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications[J]. Appl Geochem, 2004, 19(8):1255-1293
    [40] McArthur J M, Ravenscroft P, Banerjee D M, et al. How paleosols influence groundwater flow and arsenic pollution: A model from the Bengal basin and its worldwide implication[J]. Water Resour Res, 2008, 44,W11411
    [41] Polya D, Charlet L. ENVIRONMENTAL SCIENCE Rising arsenic risk?[J]. Nature Geoscience, 2009, 2(6):383-384
  • 加载中
计量
  • 文章访问数:  2085
  • HTML全文浏览数:  1999
  • PDF下载数:  557
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-08-30
罗婷, 景传勇. 地下水砷污染形成机制研究进展[J]. 环境化学, 2011, 30(1): 77-83.
引用本文: 罗婷, 景传勇. 地下水砷污染形成机制研究进展[J]. 环境化学, 2011, 30(1): 77-83.
LUO Ting, JING Chuanyong. RESEARCH PROGRESS ON MECHANISMS OF ARSENIC MOBILIZATION IN GROUNDWATER[J]. Environmental Chemistry, 2011, 30(1): 77-83.
Citation: LUO Ting, JING Chuanyong. RESEARCH PROGRESS ON MECHANISMS OF ARSENIC MOBILIZATION IN GROUNDWATER[J]. Environmental Chemistry, 2011, 30(1): 77-83.

地下水砷污染形成机制研究进展

  • 1. 中国科学院生态环境研究中心, 北京, 100085

摘要: 地下水砷污染是全球饮用水的主要威胁之一,目前全世界有超过一亿人受砷污染地下水问题的困扰.因此,深入研究地下水砷污染的形成机制,对预测地下水中砷的分布及解决地下水砷污染问题具有重要意义.本文在归纳总结前人相关研究的基础上,综述了关于地下水砷污染形成机制的不同解释及最新研究进展,重点阐述了铁氧化物还原溶解释放砷机制,并详细讨论了在此机制中微生物和有机碳等因素的重要作用.

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回