汞的环境光化学

阴永光, 李雁宾, 蔡勇, 江桂斌. 汞的环境光化学[J]. 环境化学, 2011, 30(1): 84-91.
引用本文: 阴永光, 李雁宾, 蔡勇, 江桂斌. 汞的环境光化学[J]. 环境化学, 2011, 30(1): 84-91.
YIN Yongguang, LI Yanbin, CAI Yong, JIANG Guibin. ENVIRONMENTAL PHOTO-CHEMISTRY OF MERCURY[J]. Environmental Chemistry, 2011, 30(1): 84-91.
Citation: YIN Yongguang, LI Yanbin, CAI Yong, JIANG Guibin. ENVIRONMENTAL PHOTO-CHEMISTRY OF MERCURY[J]. Environmental Chemistry, 2011, 30(1): 84-91.

汞的环境光化学

  • 基金项目:

    国家自然科学基金项目(20807047, 20937002, 20877082)资助.

ENVIRONMENTAL PHOTO-CHEMISTRY OF MERCURY

  • Fund Project:
  • 摘要: 作为一种全球污染物,汞在水体、底泥、土壤、大气等介质中以各种不同形态存在.各种汞形态具有不同的理化特性及毒性.汞形态的转化对于汞的迁移、毒性、食物链富集放大效应等具有重要影响.光照在汞的形态转化中起着重要作用,主要涉及光氧化、光还原、甲基汞的光降解以及无机汞的光化学甲基化等四个方面.本文对不同环境介质中汞的光化学转化过程研究进展进行了总结,并提出了以后研究重点的建议.
  • 加载中
  • [1] Fitzgerald W F. Atmospheric and oceanic cycling of Mercury. in chemical oceanography [M]. Vol. 10, San Diego: Academic Press, 1989: 151-189
    [2] Campbell L M, Norstrom R J, Hobson K A, et al. Mercury and other trace elements in a pelagic arctic marine food web (Northwater Polynya, Baffin bay) [J]. Science of the Total Environment, 2005, 351(SI): 247-263
    [3] Poulain A J, Ni Chadhain S M, Ariya P A, et al. Potential for mercury reduction by microbes in the high arctic [J]. Applied and Environmental Microbiology, 2007, 73(7): 2230-2238
    [4] King J K, Saunders F M, Lee R F, et al. Coupling mercury methylation rates to sulfate reduction rates in marine sediments [J]. Environmental Toxicology and Chemistry, 1999, 18(7): 1362-1369
    [5] King J K, Kostka J E, Frischer M E, et al. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments [J]. Applied and Environmental Microbiology, 2000, 66(6): 2430-2437
    [6] Marvin-Dipasquale M C, Oremland R S. Bacterial methylmercury degradation in florida everglades peat sediment [J]. Environmental Science & Technology, 1998, 32(17): 2556-2563
    [7] Oremland R S, Culbertson C W, Winfrey M R. Methylmercury decomposition in sediments and bacterial cultures-involvement of methanogens and sulfate reducers in oxidative demethylation [J]. Applied and Environmental Microbiology, 1991, 57(1): 130-137
    [8] Amyot M, Mierle G, Lean D R S, et al. Sunlight-Induced formation of dissolved gaseous mercury in lake waters [J]. Environmental Science & Technology, 1994, 28(13): 2366-2371
    [9] Lindberg S E, Brooks S, Lin C J, et al. Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise [J]. Environmental Science & Technology, 2002, 36(6): 1245-1256
    [10] Siciliano S D, O'Driscoll N J, Tordon R, et al. Abiotic production of methylmercury by solar radiation [J]. Environmental Science & Technology, 2005, 39(4): 1071-1077
    [11] Sellers P, Kelly C A, Rudd J W M, et al. Photodegradation of methylmercury in lakes [J]. Nature, 1996, 380(6576): 694-697
    [12] Carpi A, Lindberg S E. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge [J]. Environmental Science & Technology, 1997, 31(7): 2085-2091
    [13] Gustin M S, Biester H, Kim C S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates [J]. Atmospheric Environment, 2002, 36(20): 3241-3254
    [14] Choi H D, Holsen T M. Gaseous mercury emissions from unsterilized and sterilized soils: the effect of temperature and UV radiation [J]. Environmental Pollution, 2009, 157(5): 1673-1678
    [15] Carpi A, Lindberg S E. Application of a teflon (TM) dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil [J]. Atmospheric Environment, 1998, 32(5): 873-882
    [16] Wang S F, Feng X B, Qiu G L, et al. Mercury emission to atmosphere from lanmuchang Hg-Tl mining area, southwestern Guizhou, China [J]. Atmospheric Environment, 2005, 39(39): 7459-7473
    [17] Dommergue A, Ferrari C P, Poissant L, et al. Diurnal cycles of gaseous mercury within the snowpack at Kuujjuarapik/Whapmagoostui, Quebec, Canada [J]. Environmental Science & Technology, 2003, 37(15): 3289-3297
    [18] Lalonde J D, Amyot M, Doyon M R, et al. Photo-induced Hg(Ⅱ) reduction in snow from the remote and temperate experimental lakes area (Ontario, Canada) [J]. Journal of Geophysical Research-Atmospheres, 2003, 108(D6): 4200
    [19] Kirk J L, Louis V L S, Sharp M J. Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada [J]. Environmental Science & Technology, 2006, 40(24): 7590-7596
    [20] Poulain A J, Lalonde J D, Amyot M, et al. Redox transformations of mercury in an arctic snowpack at springtime [J]. Atmospheric Environment, 2004, 38(39): 6763-6774
    [21] Lalonde J D, Poulain A J, Amyot M. The role of mercury redox reactions in snow on snow-to-air mercury transfer [J]. Environmental Science & Technology, 2002, 36(2): 174-178
    [22] Gardfeldt K, Feng X B, Sommar J, et al. Total gaseous mercury exchange between air and water at river and sea surfaces in swedish coastal regions [J]. Atmospheric Environment, 2001, 35(17): 3027-3038
    [23] Costa M, Liss P S. Photoreduction of mercury in sea water and its possible implications for Hg0 air-sea fluxes [J]. Marine Chemistry, 1999, 68(1/2): 87-95
    [24] Costa M, Liss P. Photoreduction and evolution of mercury from seawater [J]. Science of the Total Environment, 2000, 261(1/3): 125-135
    [25] Alberts J J S J, Miller R W, Jr Nutter D E. Elemental mercury evolution mediated by humic acid [J]. Science, 1974, 184(4139): 895-897
    [26] Allard B, Arsenie I. Abiotic reduction of mercury by humic substances in aquatic systeman important process for the mercury cycle [J]. Water Air and Soil Pollution, 1991, 56(1): 457-464
    [27] Xiao Z F, Stromberg D, Lindqvist O. Influence of humic substances on photolysis of divalent mercury in aqueous-solution [J]. Water Air and Soil Pollution, 1995, 80(1/4): 789-798
    [28] Nriagu J O. Mechanistic steps in the photoreduction of mercury in natural-waters [J]. Science of the Total Environment, 1994, 154(1): 1-8
    [29] O'Driscoll N J, Siciliano S D, Peak D, et al. The influence of forestry activity on the structure of dissolved organic matter in lakes: implications for mercury photoreactions [J]. Science of the Total Environment, 2006, 366(2/3): 880-893
    [30] Serudo R L, de Oliveira L C, Rocha J C, et al. Reduction capability of soil humic substances from the Rio Negro Basin, Brazil, towards Hg(Ⅱ) studied by a multimethod approach and principal component analysis (PCA) [J]. Geoderma, 2007, 138(3/4): 229-236
    [31] Gardfeldt K, Jonsson M. Is bimolecular reduction of Hg(Ⅱ) complexes possible in aqueous systems of environmental importance [J]. Journal of Physical Chemistry A, 2003, 107(22): 4478-4482
    [32] Si L, Ariya P A. Reduction of oxidized mercury species by dicarboxylic acids (C-2-C-4): kinetic and product studies [J]. Environmental Science & Technology, 2008, 42(14): 5150-5155
    [33] Amyot M, Mierle G, Lean D, et al. Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes [J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 975-987
    [34] Amyot M, Lean D, Mierle G. Photochemical formation of volatile mercury in high arctic lakes [J]. Environmental Toxicology and Chemistry, 1997, 16(10): 2054-2063
    [35] Lalonde J D, Amyot M, Kraepiel A M L, et al. Photooxidation of Hg(0) in artificial and natural waters [J]. Environmental Science & Technology, 2001, 35(7): 1367-1372
    [36] Yamamoto M. Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments [J]. Chemosphere, 1996, 32(6): 1217-1224
    [37] Hines N A, Brezonik P L. Mercury dynamics in a small northern minnesota lake: water to air exchange and photoreactions of mercury [J]. Marine Chemistry, 2004, 90(1/4): 137-149
    [38] Schroeder W H, Anlauf K G, Barrie L A, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332
    [39] Skov H, Christensen J H, Goodsite M E, et al. Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic [J]. Environmental Science & Technology, 2004, 38(8): 2373-2382
    [40] Sprovieri F, Pirrone N, Landis M S, et al. Oxidation of gaseous elemental mercury to gaseous divalent mercury during 2003 polar sunrise at Ny-Alesund [J]. Environmental Science & Technology, 2005, 39(23): 9156-9165
    [41] Ebinghaus R, Kock H H, Temme C, et al. Antarctic springtime depletion of atmospheric mercury [J]. Environmental Science & Technology, 2002, 36(6): 1238-1244
    [42] Temme C, Einax J W, Ebinghaus R, et al. Measurements of atmospheric mercury species at a coastal site in the antarctic and over the south Atlantic ocean during polar summer [J]. Environmental Science & Technology, 2003, 37(1): 22-31
    [43] Peleg M, Matveev V, Tas E, et al. Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel [J]. Environmental Science & Technology, 2007, 41(21): 7280-7285
    [44] Zhang T, Hsu-Kim H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands [J]. Nature Geoscience, 2010,3(7): 473-476
    [45] Inoko M. Studies on the photochemical decomposition of organomercurials- methyl mercury(Ⅱ) chloride [J]. Environmental Pollution- Series B, 1981, 2(1): 3-10
    [46] Chen J, Pehkonen S O, Lin C J. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters [J]. Water Research, 2003, 37(10): 2496-2504
    [47] Gardfeldt K, Sommar J, Stromberg D, et al. Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase [J]. Atmospheric Environment, 2001, 35(17): 3039-3047
    [48] 左跃钢. 汞的形态分析及其在环境化学研究中的应用. 中国科学院环境化学研究所硕士论文, 1984
    [49] Takizawa Y, Minagawa K, Hisamatsu S. Studies on mercury behavior in man's environment: (report V) photodegradation of methylmercury in the atmosphere by ultraviolet rays with sterilization [J]. Japanese Journal of Public Health, 1981, 28: 313-320
    [50] Lehnherr I, Louis V L S. Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems [J]. Environmental Science & Technology, 2009, 43(15): 5692-5698
    [51] Li Y B, Mao Y X, Liu G L, et al.Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades [J]. Environ Sci Technol, 2010, 44(17):6661-6666
    [52] Hammerschmidt C R, Fitzgerald W F. Iron-mediated photochemical decomposition of methylmercury in an Arctic Alaskan Lake [J]. Environ Sci Technol, 2010, 44(16): 6138-6143
    [53] Suda I, Suda M, Hirayama K. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea-water exposed to sunlight or ultraviolet-light [J]. Archives of Toxicology, 1993, 67(5): 365-368
    [54] Hammerschmidt C R, Fitzgerald W F. Photodecomposition of methylmercury in an Arctic Alaskan Lake [J]. Environmental Science & Technology, 2006, 40(4): 1212-1216
    [55] Hammerschmidt C R, Fitzgerald W F, Lamborg C H, et al. Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic Alaska [J]. Environmental Science & Technology, 2006, 40(4): 1204-1211
    [56] Frankland E. On a new series of organic bodies containing metals [J]. Philosophical Transactions of the Royal Society of London, 1852, 142(417): 438-444
    [57] 喜田村正次, 近藤雅臣, 泷泽行雄, 等著. 侯绍棠译. 汞 [M]. 北京: 原子能出版社, 1988: 296-299
    [58] Akagi H,Takabatake E. Photochemical formation of methylmercuric compound from mercuric acetate [J]. Chemosphere, 1973, 3: 131-133
    [59] Hayashi K, Kawai S, Ohno T, et al. Photomethylation of inorganic mercury by aliphatic α-animo-acids [J]. Chemical Communications, 1977: 158-159
    [60] Akagi H, Fujita Y, Takabatake E. Photochemical methylation of inorganic mercury in the present of mercuric sulfide [J]. Chemistry Letters, 1975: 171-176
    [61] 左跃钢, 庞叔薇. 巯基化合物存在下无机汞的光化学甲基化 [J]. 环境科学学报, 1985, 5: 239-243
    [62] 陈建华.甲基汞的污染及汞非生物甲基化研究. 中国科学院生态环境研究中心博士论文, 1999
    [63] Lean D R S, Siciliano S D. Production of methylmercury by solar radiation [J]. Journal de Physique Ⅳ, 2003, 107: 743-747
    [64] Laffont L, Sonke J E, Maurice L, et al. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon [J]. Environmental Science & Technology, 2009, 43(23): 8985-8990
    [65] Kritee K, Barkay T, Blum J D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury [J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1285-1296
    [66] Bergquist B A, Blum J D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems [J]. Science, 2007, 318(5849): 417-420
    [67] Biswas A, Blum J D, Bergquist B A, et al. Natural mercury isotope variation in coal deposits and organic soils [J]. Environmental Science & Technology, 2008, 42(22): 8303-8309
    [68] Sherman L S, Blum J D, Johnson K P, et al. Mass-independent fractionation of mercury isotopes in arctic snow driven by sunlight [J]. Nature Geoscience, 3(3): 173-177
    [69] Bergquist R A, Blum J D. The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation [J]. Elements, 2009, 5(6): 353-357
    [70] Kritee K, Blum J D, Johnson M W, et al. Mercury stable isotope fractionation during reduction of Hg(Ⅱ) to Hg(0) by mercury resistant microorganisms [J]. Environmental Science & Technology, 2007, 41(6): 1889-1895
    [71] Zheng W, Hintelmann H. Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds [J]. Journal of Physical Chemistry A, 114(12): 4246-4253
    [72] Zheng W, Hintelmann H. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio [J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6704-6715
    [73] Malinovsky D, Latruwe K, Moens L, et al. Experimental study of mass-independence of Hg isotope fractionation during photodecomposition of dissolved methylmercury [J]. Journal of Analytical Atomic Spectrometry, 25(7): 950-956
    [74] Hintelmann H, Welbourn P M, Evans R D, Binding of methylmercury compounds by humic and fulvic-acids [J]. Water Air and Soil Pollution, 1995, 80(1/4): 1031-1034
    [75] Hintelmann H, Welbourn P M, Evans R D. Measurement of complexation of methylmercury(Ⅱ) compounds by freshwater humic substances using equilibrium dialysis [J]. Environmental Science & Technology, 1997, 31(2): 489-495
    [76] Guo L D, Hunt B J, Santschi P H, et al. Effect of dissolved organic matter on the uptake of trace metals by american oysters [J]. Environmental Science & Technology, 2001, 35(5): 885-893
    [77] Bonzongo J C J, Donkor A K. Increasing UV-B radiation at the earth's surface and potential effects on aqueous mercury cycling and toxicity [J]. Chemosphere, 2003, 52(8): 1263-1273
  • 加载中
计量
  • 文章访问数:  1742
  • HTML全文浏览数:  1562
  • PDF下载数:  483
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-08-30
阴永光, 李雁宾, 蔡勇, 江桂斌. 汞的环境光化学[J]. 环境化学, 2011, 30(1): 84-91.
引用本文: 阴永光, 李雁宾, 蔡勇, 江桂斌. 汞的环境光化学[J]. 环境化学, 2011, 30(1): 84-91.
YIN Yongguang, LI Yanbin, CAI Yong, JIANG Guibin. ENVIRONMENTAL PHOTO-CHEMISTRY OF MERCURY[J]. Environmental Chemistry, 2011, 30(1): 84-91.
Citation: YIN Yongguang, LI Yanbin, CAI Yong, JIANG Guibin. ENVIRONMENTAL PHOTO-CHEMISTRY OF MERCURY[J]. Environmental Chemistry, 2011, 30(1): 84-91.

汞的环境光化学

  • 1.  佛罗里达国际大学化学与生物化学系, 美国迈阿密, 33199;
  • 2.  中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室, 北京, 100085
基金项目:

国家自然科学基金项目(20807047, 20937002, 20877082)资助.

摘要: 作为一种全球污染物,汞在水体、底泥、土壤、大气等介质中以各种不同形态存在.各种汞形态具有不同的理化特性及毒性.汞形态的转化对于汞的迁移、毒性、食物链富集放大效应等具有重要影响.光照在汞的形态转化中起着重要作用,主要涉及光氧化、光还原、甲基汞的光降解以及无机汞的光化学甲基化等四个方面.本文对不同环境介质中汞的光化学转化过程研究进展进行了总结,并提出了以后研究重点的建议.

English Abstract

参考文献 (77)

返回顶部

目录

/

返回文章
返回