[1]
|
路瑞娟, 付杰, 王晨晨, 等. 城市污泥处理过程中重金属迁移转化特性研究进展[J]. 环境工程技术学报, 2023, 13(1): 318-324. doi: 10.12153/j.issn.1674-991X.20210762
CrossRef Google Scholar
Pub Med
|
[2]
|
张彦平, 裴佳华, 高珊珊, 等. 生物质材料用于污泥深度脱水的研究进展[J]. 工业水处理, 2022, 42(7): 24-32. doi: 10.19965/j.cnki.iwt.2021-0571
CrossRef Google Scholar
Pub Med
|
[3]
|
ZHU F F, WU X M, ZHAO L Y, et al. Lipid profiling in sewage sludge[J]. Water Research, 2017, 116: 149-158. doi: 10.1016/j.watres.2017.03.032
CrossRef Google Scholar
Pub Med
|
[4]
|
MOLDED A, CENDON Y, BARRAL M T. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design[J]. Bioresource Technology, 2007, 98(16): 3069-3075. doi: 10.1016/j.biortech.2006.10.021
CrossRef Google Scholar
Pub Med
|
[5]
|
吕丰锦, 韩云平, 刘俊新, 等. 污泥有机成分与污泥厌氧消化潜能的研究进展[J]. 环境工程, 2016, 34(S1): 780-785+467.
Google Scholar
Pub Med
|
[6]
|
ZHANG Z Y, RUI J, ZHOU H T, et al. Migration characteristics of heavy metals during sludge pyrolysis[J]. Waste Management, 2021, 120: 25-32. doi: 10.1016/j.wasman.2020.11.018
CrossRef Google Scholar
Pub Med
|
[7]
|
TSAI W T, LEE M K, CHANG J H, et al. Characterization of bio-oil from induction-heating pyrolysis of food processing sewage sludges using chromatographic analysis[J]. Bioresource Technology, 2009, 100(9): 2650-2654. doi: 10.1016/j.biortech.2008.11.023
CrossRef Google Scholar
Pub Med
|
[8]
|
DE S S C, BOMFIM M R, CONCEICAO D A M, et al. Induced changes of pyrolysis temperature on the physicochemical traits of sewage sludge and on the potential ecological risks[J]. Scientific Reports, 2021, 11(1): 974-974. doi: 10.1038/s41598-020-79658-4
CrossRef Google Scholar
Pub Med
|
[9]
|
WANG S Z, WANG J L. Nitrogen doping sludge-derived biochar to activate peroxymonosulfate for degradation of sulfamethoxazole: modulation of degradation mechanism by calcination temperature[J]. Journal of Hazardous Materials, 2021, 418: 126309. doi: 10.1016/j.jhazmat.2021.126309
CrossRef Google Scholar
Pub Med
|
[10]
|
CHEN W F, MENG J, HAN X R, et al. Past, present, and future of biochar[J]. Biochar, 2019, 1(1): 75-87. doi: 10.1007/s42773-019-00008-3
CrossRef Google Scholar
Pub Med
|
[11]
|
REN M G, FONG C W W, MOHD N S A, et al. Pyrolysis of waste activated sludge from food manufacturing industry: thermal degradation, kinetics and thermodynamics analysis[J]. Energy, 2021, 235: 121264. doi: 10.1016/j.energy.2021.121264
CrossRef Google Scholar
Pub Med
|
[12]
|
徐新宇, 杨家宽, 宋健, 等. 调理脱水污泥的热解特性及动力学分析[J]. 环境化学, 2016, 35(5): 972-981. doi: 10.7524/j.issn.0254-6108.2016.05.2015122103
CrossRef Google Scholar
Pub Med
|
[13]
|
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析标准方法: GB/T 212-2008[S]. 北京: 中国标准出版社, 2009.
Google Scholar
Pub Med
|
[14]
|
KIM S S, LY H V, KIM J, et al. Thermogravimetric characteristics and pyrolysis kinetics of alga sagarssum sp. biomass[J]. Bioresource Technology, 2013, 139: 242-248. doi: 10.1016/j.biortech.2013.03.192
CrossRef Google Scholar
Pub Med
|
[15]
|
杨凯, 丁志江, 肖立春, 等. 城市污泥耦合锯末共热解特性及动力学分析[J]. 热能动力工程, 2018, 33(3): 112-118. doi: 10.16146/j.cnki.rndlgc.2018.03.017
CrossRef Google Scholar
Pub Med
|
[16]
|
SAID N, BISHARA T, GARCIA-MARAVER A, et al. Effect of water washing on the thermal behavior of rice straw[J]. Waste Management, 2013, 33(11): 2250-2256. doi: 10.1016/j.wasman.2013.07.019
CrossRef Google Scholar
Pub Med
|
[17]
|
THIPKHUNTHOD P, MEEYOO V, RANGSUNVIGIT P, et al. Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1): 78-85.
Google Scholar
Pub Med
|
[18]
|
BIAGINI E, BARONTINI F, TOGNOTTI L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique[J]. Industrial and Engineering Chemistry Research, 2006, 45(13): 4486-4493. doi: 10.1021/ie0514049
CrossRef Google Scholar
Pub Med
|
[19]
|
ZHOU P, XIONG S J, ZHANG Y X, et al. Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18181-18188. doi: 10.1016/j.ijhydene.2017.04.144
CrossRef Google Scholar
Pub Med
|
[20]
|
CAO J P, XIAO X B, ZHANG S Y, et al. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolysis of municipal, livestock, and wood waste[J]. Bioresource Technology, 2011, 102(2): 2009-2015. doi: 10.1016/j.biortech.2010.09.057
CrossRef Google Scholar
Pub Med
|
[21]
|
FRANCIOSO O, RODRIGUEZ-ESTRADA M T, MONTECCHIO D, et al. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production[J]. Journal of Hazardous Materials, 2010, 175(1): 740-746.
Google Scholar
Pub Med
|
[22]
|
张曌. 污泥催化热解工艺过程效能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Google Scholar
Pub Med
|
[23]
|
卢艳军. 污泥含碳和含氧化学基团热解演变机制研究[D]. 杭州: 浙江工业大学, 2019.
Google Scholar
Pub Med
|
[24]
|
DAMARTZIS T, VAMVUKA D, SFAKIOTAKIS S, et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)[J]. Bioresource Technology, 2011, 102(10): 6230-6238. doi: 10.1016/j.biortech.2011.02.060
CrossRef Google Scholar
Pub Med
|
[25]
|
WANG B, XU X, CAO X, et al. Pyrolysis of predried dyeing sludge: weight loss characteristics, surface morphology, functional groups and kinetic analysis[J]. The Canadian Journal of Chemical Engineering, 2021, 99(12): 2619-2634. doi: 10.1002/cjce.24048
CrossRef Google Scholar
Pub Med
|
[26]
|
YANG X X, ZHAO Y Y, LI R, et al. A modified kinetic analysis method of cellulose pyrolysis based on TG-FTIR technique[J]. Thermochimica Acta, 2018, 665: 20-27. doi: 10.1016/j.tca.2018.05.008
CrossRef Google Scholar
Pub Med
|
[27]
|
KRUEGER B C, FOWLER G D, TEMPLETON M R, et al. Faecal sludge pyrolysis: understanding the relationships between organic composition and thermal decomposition[J]. Journal of Environmental Management, 2021, 298: 113456. doi: 10.1016/j.jenvman.2021.113456
CrossRef Google Scholar
Pub Med
|
[28]
|
XU Q Y, TANG S Q, WANG J C, et al. Pyrolysis kinetics of sewage sludge and its biochar characteristics[J]. Process Safety and Environmental Protection, 2018, 115: 49-56. doi: 10.1016/j.psep.2017.10.014
CrossRef Google Scholar
Pub Med
|
[29]
|
ZONG P J, JIANG Y, TIAN Y Y, et al. Pyrolysis behavior and product distributions of biomass six group components: starch, cellulose, hemicellulose, lignin, protein and oil[J]. Energy Conversion and Management, 2020, 216: 112777. doi: 10.1016/j.enconman.2020.112777
CrossRef Google Scholar
Pub Med
|
[30]
|
WANG C X, BI H B, LIN Q Z, et al. Co-pyrolysis of sewage sludge and rice husk by TG-FTIR-MS: pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics[J]. Renewable Energy, 2020, 160: 1048-1066. doi: 10.1016/j.renene.2020.07.046
CrossRef Google Scholar
Pub Med
|
[31]
|
LIU T T, GUO Y C, PENG N N, et al. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 298-306. doi: 10.1016/j.jaap.2017.05.017
CrossRef Google Scholar
Pub Med
|
[32]
|
MANIK M M, ALAM N, AHOMMED M S, et al. Emerging applications of sludge biochar-based catalysts for environmental remediation and energy storage: a review[J]. Journal of Cleaner Production, 2022, 360: 132131. doi: 10.1016/j.jclepro.2022.132131
CrossRef Google Scholar
Pub Med
|
[33]
|
胡艳军, 吴亚男, 高涛, 等. 污泥热解中残焦表面官能团结构演化特征[J]. 燃烧科学与技术, 2018, 24(2): 126-131.
Google Scholar
Pub Med
|
[34]
|
袁志航, 楼紫阳. 市政污泥衍生功能化炭材料合成及热解过程污染控制研究进展[J]. 硅酸盐通报, 2021, 40(5): 1520-1528. doi: 10.16552/j.cnki.issn1001-1625.2021.05.010
CrossRef Google Scholar
Pub Med
|
[35]
|
JIAO Y X, LI D Y, WANG M, et al. A scientometric review of biochar preparation research from 2006 to 2019[J]. Biochar, 2021, 3: 283-298. doi: 10.1007/s42773-021-00091-5
CrossRef Google Scholar
Pub Med
|
[36]
|
辛旺, 宋永会, 张亚迪, 等. 污泥基碳吸附材料的制备及其吸附性能研究进展[J]. 环境工程技术学报, 2017, 7(3): 306-317. doi: 10.3969/j.issn.1674-991X.2017.03.044
CrossRef Google Scholar
Pub Med
|