[1]
|
FALKOWSKI P. The power of plankton[J]. Nature, 2012, 483: S17-S2. doi: 10.1038/483S17a
CrossRef Google Scholar
Pub Med
|
[2]
|
FIELD C B, BEHRENFELD M J, RANDERSON R J, FALKOWSKI P. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281: 237-240. doi: 10.1126/science.281.5374.237
CrossRef Google Scholar
Pub Med
|
[3]
|
PADISA K J. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—an experimental study[J]. Hydrobiologia, 2003, 500: 243-257. doi: 10.1023/A:1024613001147
CrossRef Google Scholar
Pub Med
|
[4]
|
NASELLI F L. Shape and size in phytoplankton ecology: do they matter[J]. Hydrobiologia, 2007, 578: 157-161. doi: 10.1007/s10750-006-2815-z
CrossRef Google Scholar
Pub Med
|
[5]
|
LEWIS W M. Surface/volume ratio: implications for phytoplankton morphology[J]. Science, 1976, 192: 885-887. doi: 10.1126/science.192.4242.885
CrossRef Google Scholar
Pub Med
|
[6]
|
MARGALEF R. Life-forms of phytoplankton as survival alternatives in an unstable environment[J]. Oceanologica Acta, 1978, 1: 493-509.
Google Scholar
Pub Med
|
[7]
|
REYNOLDS C S. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory[M]. Oldendorf: Ecology Institute, 1976: 10-20.
Google Scholar
Pub Med
|
[8]
|
REYNOLDS C S. Towards a functional classification of the freshwater phytoplankton[J]. Journal of plankton research, 2002, 24: 417-428. doi: 10.1093/plankt/24.5.417
CrossRef Google Scholar
Pub Med
|
[9]
|
WEITHOFF G. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—a new understanding of phytoplankton ecology? Freshwater Biology, 2003, 48(9): 1669-1675.
Google Scholar
Pub Med
|
[10]
|
刘其根, 陈立侨, 陈勇. 千岛湖水华发生与主要环境因子的相关性分析[J]. 海洋湖沼通报, 2007, 1: 117-124. doi: 10.3969/j.issn.1003-6482.2007.01.017
CrossRef Google Scholar
Pub Med
|
[11]
|
NASELLI F L. Phytoplankton assemblages in twentyone Sicilian reservoirs: relationships between species composition and environmental factors[J]. Hydrobiologia, 2000, 424: 1-11. doi: 10.1023/A:1003907124528
CrossRef Google Scholar
Pub Med
|
[12]
|
O’FARRELL I. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland[J]. Hydrobiologia, 2007, 578: 65-77. doi: 10.1007/s10750-006-0434-3
CrossRef Google Scholar
Pub Med
|
[13]
|
NASELLI F L, Barone R, Chorus I, Kurmayer R. Toxic cyanobacterial blooms in reservoirs under a semiarid mediterranean climate: the magnification of a problem[J]. Environ Toxicol, 2007, 22(4): 399-404. doi: 10.1002/tox.20268
CrossRef Google Scholar
Pub Med
|
[14]
|
SU M, AN W, YU J, et al. Importance of Underwater Light field in selecting phytoplankton morphology in a eutrophic reservoir[J]. Hydrobiologia, 2014, 724: 203-216. doi: 10.1007/s10750-013-1734-z
CrossRef Google Scholar
Pub Med
|
[15]
|
BENNETT A, BOGORAD L. Complementary chromatic adaptation in a filamentous blue-green algal[J]. Journal of Cell Biology, 1973, 58: 419-435. doi: 10.1083/jcb.58.2.419
CrossRef Google Scholar
Pub Med
|
[16]
|
BORDOWITZ J R, MONTGOMERY B L. Photoregulation of cellular morphology during complementary chromatic adaptation requires sensorkinase-class protein RcaE in Fremyella diplosiphon[J]. Journal of Bacteriology, 2008, 190: 4069-4074. doi: 10.1128/JB.00018-08
CrossRef Google Scholar
Pub Med
|
[17]
|
KINGSOLVER J G, HUEY R B. Size, temperature, and fitness: three rules[J]. Evolutionary Ecology Research, 2008, 10(2): 251-268.
Google Scholar
Pub Med
|
[18]
|
MONTGOMERY B L. Shedding new light on the regulation of complementary chromatic adaptation[J]. Central European Journal of Biology, 2008, 3: 351-358.
Google Scholar
Pub Med
|
[19]
|
SINGH S P, MONTGOMERY B L. Determining cell shape: Adaptive regulation of cyanobacterial cellular differentiation and morphology[J]. Trends in Microbiology, 2011, 19: 278-285. doi: 10.1016/j.tim.2011.03.001
CrossRef Google Scholar
Pub Med
|
[20]
|
GENTY B, BRIANTAIS J M, BAKER N R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 1989, 990: 87-92. doi: 10.1016/S0304-4165(89)80016-9
CrossRef Google Scholar
Pub Med
|
[21]
|
BILGER W, BJÖRKMAN O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light‐induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis[J]. Photosynthesis Research, 1990, 25: 173-185. doi: 10.1007/BF00033159
CrossRef Google Scholar
Pub Med
|
[22]
|
WALTERS R G, HORTON P. Resolution of components of non‐photochemical chlorophyll fluorescence quenching in barley leaves[J]. Photosynthesis Research, 1991, 27: 121-133. doi: 10.1007/BF00033251
CrossRef Google Scholar
Pub Med
|
[23]
|
李大命, 阳振, 于洋, 等. 太湖春季和秋季蓝藻光合作用活性研究[J]. 环境科学学报, 2013, 33(11): 3053-3059. doi: 10.13671/j.hjkxxb.2013.11.024
CrossRef Google Scholar
Pub Med
|
[24]
|
KASHINO Y, KUDOH S, HAYASHI Y, et al. Strategies of phytoplankton to perform effective photosynthesis in the North Water[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2002, 49: 5049-5061. doi: 10.1016/S0967-0645(02)00177-7
CrossRef Google Scholar
Pub Med
|
[25]
|
ZHOU X S, JI Y L, KONG F Q. Primary study on the stratification characteristics of Yuqiao Reservoir based on site monitoring parameters of water quality[J]. Haihe Water Resources, 2015, 2: 19-21.
Google Scholar
Pub Med
|
[26]
|
JIANG X, LI S, YAO S. Phosphorus occurence characteristics and environmental significance of sediments inYuqiao Reservoir, Tianjin[J]. Journal of Lake Sciences, 2018, 30(3): 50-61.
Google Scholar
Pub Med
|
[27]
|
LIU C, YU M, ZHOU C. Effects of water transport on the temporal and spatial variation of water quality in bridge reservoirs[J]. Journal of Lake Sciences, 2019, 31(1): 52-64. doi: 10.18307/2019.0105
CrossRef Google Scholar
Pub Med
|
[28]
|
PRESCOTT G W. Algae of the Western great lakes area: exclusive of desmids and diatoms[M]. Bloomfield Hills: Cranbrook Institute of Science, 1951: 25-36.
Google Scholar
Pub Med
|
[29]
|
BELLINGER E G. A key to the identification of the more common algae found in British freshwaters[J]. Water Treatment and Examination, 1974, 23: 76-131.
Google Scholar
Pub Med
|
[30]
|
LING H, PETER A T. Australian Freshwater Algae (exclusive of diatoms)[M]. Bibliotheca Phycologica, 2000: 159-164.
Google Scholar
Pub Med
|
[31]
|
EILERS P H C, PEETERS J C H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecological Modelling, 1988, 42: 199-215. doi: 10.1016/0304-3800(88)90057-9
CrossRef Google Scholar
Pub Med
|
[32]
|
PLOUG H, STOLTE W. Diffusive boundary layers, photosynthesis and respiration of the colony-forming plankton algae, Phaeocystis sp[J]. Limnology and Oceanography, 1999, 44: 1949-1958. doi: 10.4319/lo.1999.44.8.1949
CrossRef Google Scholar
Pub Med
|
[33]
|
MIAO Y, WANG X, GAO L, CHEN Q, QU M. Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves[J]. Journal of Integrative Agriculture, 2016, 15: 87-100. doi: 10.1016/S2095-3119(15)61202-3
CrossRef Google Scholar
Pub Med
|
[34]
|
LUIMSTRA V M, SCHUURMANS J M, VERSCHOOR A M. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II[J]. Photosynthesis Research, 2018, 138: 177-189. doi: 10.1007/s11120-018-0561-5
CrossRef Google Scholar
Pub Med
|
[35]
|
HALSTVEDT C B, ROHELACK T, ANDERSEN T, et al. Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors[J]. Journal of Plankton Research, 2007, 29: 471-482. doi: 10.1093/plankt/fbm036
CrossRef Google Scholar
Pub Med
|
[36]
|
TORRES C D A, LURKING M, MARINHO M M. Assessment of the effects of light availability on growth and competition between strains of Planktothrix agardhii and Microcystis aeruginosa[J]. Microbial Ecology, 2016, 71: 802-813. doi: 10.1007/s00248-015-0719-z
CrossRef Google Scholar
Pub Med
|
[37]
|
SU M, ANDERSEN T, BURCH M, et al. Succession and interaction of surface and subsurface cyanobacterial blooms in oligotrophic/mesotrophic reservoirs: a case study in Miyun Reservoir[J]. Science of the Total Environment, 2019, 64: 1553-1562.
Google Scholar
Pub Med
|
[38]
|
SU M, ZHU Y, JIA Z, et al. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir[J]. Water Research, 2021, 192: 116848. doi: 10.1016/j.watres.2021.116848
CrossRef Google Scholar
Pub Med
|