2020 Volume 15 Issue 3
Article Contents

Zhang Jiawei, Qi Guanjing, Zhao Haoduo, Ge Hui, Liu Qingwei, Shi Jianghong, Yu Xiangyi, Mao Yan, Guo Wei, Meng Yaobin, Li Xiaoyan. Ecological Risk Assessment of Nonylphenol in Surface Waters of the Yangtze River Delta Based on Species Sensitivity Distribution Model[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 134-148. doi: 10.7524/AJE.1673-5897.20191119001
Citation: Zhang Jiawei, Qi Guanjing, Zhao Haoduo, Ge Hui, Liu Qingwei, Shi Jianghong, Yu Xiangyi, Mao Yan, Guo Wei, Meng Yaobin, Li Xiaoyan. Ecological Risk Assessment of Nonylphenol in Surface Waters of the Yangtze River Delta Based on Species Sensitivity Distribution Model[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 134-148. doi: 10.7524/AJE.1673-5897.20191119001

Ecological Risk Assessment of Nonylphenol in Surface Waters of the Yangtze River Delta Based on Species Sensitivity Distribution Model

  • Received Date: 19/11/2019
    Fund Project:
  • Nonylphenol (NP) is a typical type of persistent organic pollutants (POPs) with endocrine-disrupting effect. Its ecological risk has caused increasing concerns owing to its degradation-resistance, bioaccumulation, and widespread distribution in the environment. The species sensitivity distribution (SSD) method has been widely used for establishing water quality criteria (WQC) and performing ecological risk assessment (ERA) of the water environment. However, the selected sensitive species may exhibit different toxicity sensitivity in different geographical regions, which would affect the results of WQC and ERA. In this study, SSD was applied to calculate the predicted no effect concentrations (PNECs) based on the acute and chronic toxicity data of the general sensitive species and native sensitive species in China. The results showed that there was little difference between the PNECs derived from the general sensitive species and native sensitive species based on the acute toxicity data, which indicated that the sensitivity of native species towards the acute toxicity effect of NP is similar to that of general species. However, the PNECs based on the chronic toxicity data were quite different, and the Chinese native species appeared to be more sensitive than general species to the chronic toxicity effect of NP. As a result, direct use of the PNECs derived from non-local species may lead to insufficient protection of Chinese native species. Based on the PNECs derived from the acute and chronic toxicity data, the risk quotient (RQ) method was used to characterize the ecological risk of NP in the surface waters of Yangtze River Delta. The results showed that the RQ based on PNECs derived from the acute data and chronic data of general sensitive species may lead to an underestimation of the ecological risk. The mean RQ values based on the PNECs derived from the chronic data of Chinese native sensitive species ranged from 0.23 to 1.55. Luoma Lake was found at a high risk, and the maximum RQ values of Taihu Lake and Yangtze River (Nanjing) exceeded 1, indicating the high risk of the individual areas which deserve further attentions. In conclusion, the chronic toxic effect of NP on Chinese native aquatic organisms can be identified, and continuous attention should be paid to the long-term adverse effect of NP, for which actions should be taken to ensure the health of the aquatic ecosystem.
  • 加载中
  • Lian J, Liu J X, Wei Y S. Fate of nonylphenol polyethoxylates and their metabolites in four Beijing wastewater treatment plants[J]. Science of the Total Environment, 2009, 407(14):4261-4268

    Google Scholar Pub Med

    Ying G G, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates-A review[J]. Environment International, 2002, 28(3):215-226

    Google Scholar Pub Med

    李明姝, 刘征涛, 周俊丽. 内分泌干扰物壬基酚在环境中迁移转化的研究进展[J]. 环境化学, 2013, 32(7):1212-1217 Li M S, Liu Z T, Zhou J L, et al. Advance in research on the transport and transformation of nonylphenol[J]. Environmental Chemistry, 2013, 32(7):1212-1217(in Chinese)

    Google Scholar Pub Med

    吴天伟, 孙艺, 崔蓉, 等. 内分泌干扰物壬基酚与辛基酚的污染现状与毒性的研究进展[J]. 环境化学, 2017, 36(5):951-959 Wu T W, Sun Y, Cui R, et al. Environmental occurences and toxicity of endocrine disrupters nonylphenol and octylphenol[J]. Environmental Chemistry, 2017, 36(5):951-959(in Chinese)

    Google Scholar Pub Med

    Schwaiger J, Mallow U, Ferling H, et al. How estrogenic is nonylphenol?:A transgenerational study using rainbow trout (Oncorhynchus mykiss) as a test organism[J]. Aquatic Toxicology, 2002, 59(3-4):177-189

    Google Scholar Pub Med

    周自坚, 虢清伟, 王丽, 等. 壬基酚聚氧乙烯醚在印染废水处理工艺中的去除研究[J]. 环境工程学报, 2014, 8(8):3107-3113 Zhou Z J, Guo Q W, Wang L, et al. Elimination of nonylphenol ethoxylates and its biodegrading products from dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2014, 8(8):3107-3113(in Chinese)

    Google Scholar Pub Med

    United States Environmental Protection Agency (US EPA). Guidelines for ecological risk assessment[R]. Washington DC:US EPA, 1998

    Google Scholar Pub Med

    程燕, 周军英, 单正军. 美国农药水生生态风险评价研究进展[J]. 农业学学报, 2005, 7(4):293-298 Cheng Y, Zhou J Y, Shan Z J. Progress of study on aquatic ecological risk assessment of pesticides in USA[J]. Chinese Journal of Pesticide Science, 2005, 7(4):293-298(in Chinese)

    Google Scholar Pub Med

    United States Environmental Protection Agency (US EPA). Aquatic life ambient water quality criteria-Nonylphenol[R]. Washington DC:US EPA, 2005

    Google Scholar Pub Med

    European Commission. Technical guidance document on risk assessment[R]. Ispra:European Commission Joint Research Centre, 2003

    Google Scholar Pub Med

    European Chemicals Bureau (ECB). European Union risk assessment report:4-nonylphenol (branched) and nonylphenol[R]. Helsinki:ECB, 2002

    Google Scholar Pub Med

    陈慰双. 我国水环境中壬基酚的污染现状及生态风险评估[D]. 青岛:中国海洋大学, 2013:17-29 Chen W S. The current pollution status and ecological risk assessment of nonylphenol in domestic water environment[D]. Qingdao:Ocean University of China, 2013:17 -29(in Chinese)

    Google Scholar Pub Med

    高培. 壬基酚的水质基准探讨和生态风险评价[D]. 青岛:中国海洋大学, 2014:18-47 Gao P. Derivation of water quality criteria for nonylphenol and its application in ecological risk assessment[D]. Qingdao:Ocean University of China, 2014:18 -47(in Chinese)

    Google Scholar Pub Med

    Jin X, Wang Y, Jin W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness[J]. Environmental Science & Technology, 2013, 48(2):1256-1262

    Google Scholar Pub Med

    Zhang L, Wei C, Zhang H, et al. Criteria for assessing the ecological risk of nonylphenol for aquatic life in Chinese surface fresh water[J]. Chemosphere, 2017, 184:569-574

    Google Scholar Pub Med

    李雯雯, 王晓南, 高祥云, 等. 基于不同毒性终点的壬基酚生态风险评价[J]. 环境科学研究, 2019, 32(7):1143-1152 Li W W, Wang X N, Gao X Y, et al. Ecological risk assessment of nonylphenol based on different toxic endpoints[J]. Research of Environmental Sciences, 2019, 32(7):1143-1152(in Chinese)

    Google Scholar Pub Med

    Gao P, Li Z, Gibson M, et al. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model[J]. Chemosphere, 2014, 104:113-119

    Google Scholar Pub Med

    Kwak J I, Moon J, Kim D, et al. Species sensitivity distributions for nonylphenol to estimate soil hazardous concentration[J]. Environmental Science & Technology, 2017, 51(23):13957-13966

    Google Scholar Pub Med

    尹荣尧, 孙翔, 许文雯, 等. 江苏沿海化工快速发展的空间格局、环境响应和战略管理对策[J]. 环境科学学报, 2011, 31(5):1105-1114 Yin R Y, Sun X, Xu W W, et al. Spatial pattern of rapid chemical industrialization, environmental response, and macro-management strategies in coastal areas of Jiangsu[J]. Acta Scientiae Circumstantiae, 2011, 31(5):1105-1114(in Chinese)

    Google Scholar Pub Med

    李阳, 吴昌子. 江苏沿江化工园区环境风险防范与应急策略[J]. 环境监控与预警, 2017, 9(1):15-17 Li Y, Wu C Z. Environmental risk prevention and emergency strategy of chemical industry park along the Yangtze River in Jiangsu Province[J]. Environmental Monitoring and Forewarning, 2017, 9(1):15-17(in Chinese)

    Google Scholar Pub Med

    陈波宇, 郑斯瑞, 牛希成, 等. 物种敏感度分布及其在生态毒理学中的应用[J]. 生态毒理学报, 2010, 5(4):491-497 Chen B Y, Zheng S R, Niu X C, et al. Species sensitivity distribution and its application in ecotoxicology[J]. Asian Journal of Ecotoxicology, 2010, 5(4):491-497(in Chinese)

    Google Scholar Pub Med

    Vighi M, Finizio A, Villa S. The evolution of the environmental quality concept:From the US EPA Red Book to the European Water Framework Directive[J]. Environmental Science and Pollution Research, 2006, 13(1):9-14

    Google Scholar Pub Med

    王晓南, 闫振广, 余若祯, 等. 中美水生生物基准受试物种敏感性差异研究[J]. 环境科学, 2016, 30(8):3316-3323 Wang X N, Yan Z G, Yu R Z, et al. Difference of species sensitivities for aquatic life criteria in China and the USA[J]. Environmental Science, 2016, 30(8):3316-3323(in Chinese)

    Google Scholar Pub Med

    Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data[J]. Regulatory Toxicology and Pharmacology, 1997, 25(1):1-5

    Google Scholar Pub Med

    United States Environmental Protection Agency (US EPA). Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Washington DC:US EPA, 1985

    Google Scholar Pub Med

    He J, He H, Yan Z, et al. Comparative analysis of freshwater species sensitivity distributions and ecotoxicity for priority pesticides:Implications for water quality criteria[J]. Ecotoxicology and Environmental Safety, 2019, 176:119-124

    Google Scholar Pub Med

    Zhao J, Chen B. Species sensitivity distribution for chlorpyrifos to aquatic organisms:Model choice and sample size[J]. Ecotoxicology and Environmental Safety, 2016, 125:161-169

    Google Scholar Pub Med

    Thorley J, Schwarz C. Ssdtools:An R package to fit species sensitivity distributions[J]. Journal of Open Source Software, 2018, 3(31):1082

    Google Scholar Pub Med

    Carr G J, Belanger S E. SSDs revisited:Part I-A framework for sample size guidance on species sensitivity distribution analysis[J]. Environmental Toxicology and Chemistry, 2019, 38(7):1514-1525

    Google Scholar Pub Med

    Jager T, Hollander H A, Poel P, et al. Probabilistic environmental risk assessment for dibutylphthalate (DBP)[J]. Human and Ecological Risk Assessment, 2001, 7(6):1681-1697

    Google Scholar Pub Med

    申霞, 洪大林, 谈永锋, 等. 骆马湖生态环境现状及其保护措施[J]. 水资源保护, 2013, 29(3):39-43 Shen X, Hong D L, Tan Y F, et al. Ecological environment of Luoma Lake and protection measures[J]. Water Resources Protection, 2013, 29(3):39-43(in Chinese)

    Google Scholar Pub Med

    张芹, 张圣虎, 汪贞, 等. 骆马湖表层水体中32种PPCPs类物质的污染水平、分布特征及风险评估[J]. 环境科学, 2017, 38(1):162-169 Zhang Q, Zhang S H, Wang Z, et al. Pollution level, distribution characteristics and risk assessment of 32 PPCPs in surface water of LuomahuLake[J]. Environmental Science, 2017, 38(1):162-169(in Chinese)

    Google Scholar Pub Med

    褚春莹, 但丽霞, 蒋海威, 等. 胶州湾入海河流和排污口水体中壬基酚的污染状况调查及入海通量核算[J]. 中国环境监测, 2013, 29(2):29-33 Chu C Y, Dan L X, Jiang H W, et al. Pollution status and flux of nonylphenol in the water of the rivers and drainage outlet entering the Jiaozhou Bay[J]. Environmental Monitoring in China, 2013, 29(2):29-33(in Chinese)

    Google Scholar Pub Med

    侯绍刚, 徐建, 汪磊, 等. 黄河(兰州段)水环境中壬基酚及壬基酚聚氧乙烯醚污染的初步研究[J]. 环境化学, 2005, 24(3):250-254 Hou S G, Xu J, Wang L, et al. Primary study on nonylphenol and nonylphenol polyethoxylates in aquatic environment at Lanzhou reach of Yellow River[J]. Environmental Chemistry, 2005, 24(3):250-254(in Chinese)

    Google Scholar Pub Med

    段菁春, 陈兵, 麦碧娴, 等. 洪季珠江三角洲水系烷基酚污染状况研究[J]. 环境科学, 2004, 25(3):48-52 Duan J C, Chen B, Mai B X, et al. Survey of alkylphenols in aquatic environment of Zhujiang Delta[J]. Environmental Science, 2004, 25(3):48-52(in Chinese)

    Google Scholar Pub Med

    Jin X, Jiang G, Huang G, et al. Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring[J]. Chemosphere, 2004, 56(11):1113-1119

    Google Scholar Pub Med

    邵兵, 胡建英, 杨敏. 重庆流域嘉陵江和长江水环境中壬基酚污染状况调查[J]. 环境科学学报, 2002, 22(1):12-16 Shao B, Hu J Y, Yang M. A survey of nonylphnol in aquatic environment of Chongqing valley[J]. Acta Scientiae Circumstantiae, 2002, 22(1):12-16(in Chinese)

    Google Scholar Pub Med

    Cladière M, Bonhomme C, Vilmin L, et al. Modelling the fate of nonylphenolic compounds in the Seine River-Part 2:Assessing the impact of global change on daily concentrations[J]. Science of the Total Environment, 2014, 468:1059-1068

    Google Scholar Pub Med

    Kanaki M, Nikolaou A, Makri C A, et al. The occurrence of priority PAHs, nonylphenol and octylphenol in inland and coastal waters of Central Greece and the Island of Lesvos[J]. Desalination, 2007, 210(1-3):16-23

    Google Scholar Pub Med

    Salgueiro-González N, Turnes-Carou I, Besada V, et al. Occurrence, distribution and bioaccumulation of endocrine disrupting compounds in water, sediment and biota samples from a European river basin[J]. Science of the Total Environment, 2015, 529:121-130

    Google Scholar Pub Med

    Bennie D T, Sullivan C A, Lee H B, et al. Occurrence of alkylphenols and alkylphenol mono-and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St. Lawrence River[J]. Science of the Total Environment, 1997, 193(3):263-275

    Google Scholar Pub Med

    Li D, Dong M, Shim W J, et al. Distribution characteristics of nonylphenolic chemicals in Masan Bay environments, Korea[J]. Chemosphere, 2008, 71(6):1162-1172

    Google Scholar Pub Med

    胡雪雷, 周静韵, 段舜山. 壬基酚与壬基酚聚氧乙烯醚对多刺裸腹溞的复合毒性效应[J]. 生态环境学报, 2011, 20(11):1725-1730 Hu X L, Zhou J Y, Duan S S. Synergistic toxic effects of nonylphenol and nonylphenol ethoxylate on Moina macrocopa[J]. Ecology and Environment, 2011, 20(11):1725-1730(in Chinese)

    Google Scholar Pub Med

    Comber M H I, Williams T D, Stewart K M. The effects of nonylphenol on Daphnia magna[J]. Water Research, 1993, 27(2):273-276

    Google Scholar Pub Med

    Ha M H, Choi J. Effects of environmental contaminants on hemoglobin of larvae of aquatic midge, Chironomus riparius (Diptera:Chironomidae):A potential biomarker for ecotoxicity monitoring[J]. Chemosphere, 2008, 71(10):1928-1936

    Google Scholar Pub Med

    Ha M H, Choi J. Chemical-induced alteration of hemoglobin expression in the 4th instar larvae of Chironomus tentans Mg.(Diptera:Chironomidae)[J]. Environmental Toxicology and Pharmacology, 2008, 25(3):393-398

    Google Scholar Pub Med

    吕晓华, 古燕, 宋艳. 壬基酚对红鲫、草鱼和鲢鱼的毒性及组织蓄积研究[J]. 卫生研究, 2012, 41(5):785-789 Lv X H, Gu Y, Song Y. Toxicity and tissue accumulation of nonylphenol in Carassius auratus red variety, grass carp and sliver carp[J]. Journal of Hygiene Research, 2012, 41(5):785-789(in Chinese)

    Google Scholar Pub Med

    United States Environmental Protection Agency (US EPA). Acute and chronic toxicity of nonylphenol to ten species of aquatic organisms[R]. Washington DC:US EPA, 1993

    Google Scholar Pub Med

    黄长江, 董巧香, 马茹飞. 壬基酚对奥尼罗非鱼(Oreochromis niloticus×O. aureus)的急性毒性研究[J]. 海洋与湖沼, 2006, 37(4):309-315 Huang C J, Dong Q X, Ma R F. Nonylphenol:A toxicant to hybrid tilapia (Oreochromis niloticus×O. aureus)[J]. Oceanologia et Limnologia Sinica, 2006, 37(4):309-315(in Chinese)

    Google Scholar Pub Med

    Senthil Kumaran S, Kavitha C, Ramesh M, et al. Toxicity studies of nonylphenol and octylphenol:Hormonal, hematological and biochemical effects in Clarias gariepinus[J]. Journal of Applied Toxicology, 2011, 31(8):752-761

    Google Scholar Pub Med

    Yoshioka Y, Mizuno T, Ose Y, et al. The estimation for toxicity of chemicals on fish by physico-chemical properties[J]. Chemosphere, 1986, 15(2):195-203

    Google Scholar Pub Med

    雷忻, 田鹏飞, 唐丁丁, 等. 壬基酚胁迫对泥鳅的急性毒性效应[J]. 江苏农业科学, 2014, 42(5):306-307

    Google Scholar Pub Med

    郑晓晶, 张育辉. 壬基酚对中国林蛙蝌蚪生长发育的毒性效应[J]. 生态学杂志, 2008, 27(8):1332-1336 Zheng X J, Zhang Y H. Toxicity effects of nonylphenol on tadpoles Rana chensinensis growth and development[J]. Chinese Journal of Ecology, 2008, 27(8):1332-1336(in Chinese)

    Google Scholar Pub Med

    巩秀玉. 壬基酚对波纹巴非蛤和菲律宾蛤仔的毒性效应[D]. 上海:上海海洋大学, 2012:10-46 Gong X Y. Toxic effects of nonylphenol on Paphia undulate and Ruditapes philippinarumon[D]. Shanghai:Shanghai Ocean University, 2012:10 -46(in Chinese)

    Google Scholar Pub Med

    曾丽璇, 张悦君, 康园, 等. 双酚A和壬基酚对河蚬呼吸代谢和抗氧化酶活性的影响[J]. 生态环境学报, 2014, 23(1):122-128 Zeng L X, Zhang Y J, Kang Y, et al. Effects of BPA and NP on respiratory metabolism and antioxidant enzymes in Asian calm[J]. Ecology and Environmental Sciences, 2014, 23(1):122-128(in Chinese)

    Google Scholar Pub Med

    郭匿春, 谢平. 双酚A和壬基酚对隆线溞和微型裸腹溞的毒性[J]. 水生生物学报, 2009, 33(3):492-497 Guo N C, Xie P. The toxic effects of BPA and NP on D. carinata and M. micrura[J]. Acta Hydrobiologica Sinica, 2009, 33(3):492-497(in Chinese)

    Google Scholar Pub Med

    刘伟杰, 吴孝情, 鄢佳英, 等. 壬基酚对羊角月牙藻的毒性效应研究[J]. 中国环境科学, 2018, 38(6):2329-2336 Liu W J, Wu X Q, Yan J Y, et al. Toxic effects of nonylphenol on Selenastrum capricornutum[J]. China Environmental Science, 2018, 38(6):2329-2336(in Chinese)

    Google Scholar Pub Med

    孙凯峰. 环境激素壬基酚对枝角类浮游动物的生殖干扰效应研究[D]. 广州:暨南大学, 2012:41-49 Sun K F. Interference of environmental endocrine disrupter nonylphenol on growth and reproduction of Cladocerans[D]. Guangzhou:Jinan University, 2012:41 -49(in Chinese)

    Google Scholar Pub Med

    赵丽, 邢梦林, 常天俊, 等. 烷基酚对斜生栅藻的毒性效应及构效相关研究[J]. 河南师范大学学报:自然科学版, 2006, 34(2):71-74 Zhao L, Xing M L, Chang T J, et al. Toxic effect of restrain growth of Scenedesmus obliquus by alkyl phenols and the QSAR study[J]. Journal of Henan Normal University:Natural Science, 2006, 34(2):71-74(in Chinese)

    Google Scholar Pub Med

    Schwaiger J, Spieser O H, Bauer C, et al. Chronic toxicity of nonylphenol and ethinylestradiol:haematological and histopathological effects in juvenile common carp (Cyprinus carpio)[J]. Aquatic Toxicology, 2000, 51(1):69-78

    Google Scholar Pub Med

    Islinger M, Yuan H, Voelkl A, et al. Measurement of vitellogenin gene expression by RT-PCR as a tool to identify endocrine disruption in Japanese medaka (Oryzias latipes)[J]. Biomarkers, 2002, 7(1):80-93

    Google Scholar Pub Med

    Yang F X, Xu Y, Wen S. Endocrine-disrupting effects of nonylphenol, bisphenol A, and p,p'-DDE on Rana nigromaculata tadpoles[J]. Bulletin of Environmental Contamination and Toxicology, 2005, 75(6):1168-1175

    Google Scholar Pub Med

    Julius M L, Stepanek J, Gamble C, et al. Estrogen-receptor independent effects of two ubiquitous environmental estrogens on Melosira varians Agardh, a common component of the aquatic primary production community[J]. Aquatic Toxicology, 2007, 85(1):19-27

    Google Scholar Pub Med

    Spehar R L, Brooke L T, Markee T P, et al. Comparative toxicity and bioconcentration of nonylphenol in freshwater organisms[J]. Environmental Toxicology and Chemistry, 2010, 29(9):2104-2111

    Google Scholar Pub Med

    Balch G, Metcalfe C. Developmental effects in Japanese medaka (Oryzias latipes) exposed to nonylphenol ethoxylates and their degradation products[J]. Chemosphere, 2006, 62(8):1214-1223

    Google Scholar Pub Med

    Wang J, Xie P, Guo N. Effects of nonylphenol on the growth and microcystin production of Microcystis strains[J]. Environmental Research, 2007, 103(1):70-78

    Google Scholar Pub Med

    Kahl M D, Makynen E A, Kosian P A, et al. Toxicity of 4-nonylphenol in a life-cycle test with the midge Chironomus tentans[J]. Ecotoxicology and Environmental Safety, 1997, 38(2):155-160

    Google Scholar Pub Med

    Liber K, Gangl J A, Corry T D, et al. Lethality and bioaccumulation of 4-nonylphenol in bluegill sunfish in littoral enclosures[J]. Environmental Toxicology and Chemistry, 1999, 18(3):394-400

    Google Scholar Pub Med

    Min J, Lee S K, Gu M B. Effects of endocrine disrupting chemicals on distinct expression patterns of estrogen receptor, cytochrome P450 aromatase and p53 genes in Oryzias latipes liver[J]. Journal of Biochemical and Molecular Toxicology, 2003, 17(5):272-277

    Google Scholar Pub Med

    Soverchia L, Ruggeri B, Palermo F, et al. Modulation of vitellogenin synthesis through estrogen receptor beta-1 in goldfish (Carassius auratus) juveniles exposed to 17-β estradiol and nonylphenol[J]. Toxicology and Applied Pharmacology, 2005, 209(3):236-243

    Google Scholar Pub Med

    Zha J, Wang Z, Wang N, et al. Histological alternation and vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and nonylphenol[J]. Chemosphere, 2007, 66(3):488-495

    Google Scholar Pub Med

    Li M H, Wang Z R. Effect of nonylphenol on plasma vitellogenin of male adult guppies (Poecilia reticulata)[J]. Environmental Toxicology, 2005, 20(1):53-59

    Google Scholar Pub Med

    Coutellec M A, Delous G, Cravedi J P, et al. Effects of the mixture of diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny early performances of the pond snail Lymnaea stagnalis in laboratory bioassays and microcosms[J]. Chemosphere, 2008, 73(3):326-336

    Google Scholar Pub Med

    Preston B L, Snell T W, Robertson T L, et al. Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptors[J]. Environmental Toxicology and Chemistry, 2000, 19(12):2923-2928

    Google Scholar Pub Med

    O'halloran S L, Liber K, Gangl J A, et al. Effects of repeated exposure to 4-nonylphenol on the zooplankton community in littoral enclosures[J]. Environmental Toxicology and Chemistry, 1999, 18(3):376-385

    Google Scholar Pub Med

    Nebeker A V, Miller C E. Use of the amphipod crustacean Hyalella azteca in freshwater and estuarine sediment toxicity tests[J]. Environmental Toxicology and Chemistry, 1988, 7(12):1027-1033

    Google Scholar Pub Med

    刘伟杰, 段舜山. 邻苯二甲酸二丁酯对多刺裸腹溞生长繁殖的影响[J]. 生态科学, 2011, 30(3):229-235 Liu W J, Duan S S. Effect of dibutyl phthalate exposure on growth and multiply of Moina macrocopa[J]. Ecological Science, 2011, 30(3):229-235(in Chinese)

    Google Scholar Pub Med

    郑欣, 闫振广, 王晓南, 等. 水质基准甲壳类受试生物筛选[J]. 环境科学研究, 2014, 27(4):356-364 Zheng X, Yan Z G, Wang X N, et al. Screening of native crustaceans for deriving aquatic life criteria[J]. Research of Environmental Sciences, 2014, 27(4):356-364(in Chinese)

    Google Scholar Pub Med

    Han S, Choi K, Kim J, et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa[J]. Aquatic Toxicology, 2010, 98(3):256-264

    Google Scholar Pub Med

    曹文宣, 王剑伟. 稀有鮈鲫——一种新的鱼类实验动物[J]. 实验动物科学与管理, 2003(S1):96-99 Cao W X, Wang J W. Rare minnow:A new laboratory animal in China[J]. Laboratory Animal Science and Management, 2003 (S1):96-99(in Chinese)

    Google Scholar Pub Med

    塔娜, 房彦军, 林本成, 等. 磷酸三(2,3-二氯丙基)酯阻燃剂对稀有鮈鲫的毒性效应[J]. 生态毒理学报, 2013, 8(5):757-762 Tana, Fang Y J, Lin B C, et al. Toxic effect of tri(2, 3-dichloroprophyl) phosphate flame retardant on rare minnow (Gobiocypris rarus)[J]. Asian Journal of Ecotoxicology, 2013, 8(5):757-762(in Chinese)

    Google Scholar Pub Med

    Zha J, Sun L, Zhou Y, et al. Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus)[J]. Toxicology and Applied Pharmacology, 2008, 226(3):298-308

    Google Scholar Pub Med

    Fang Y, Gao X, Zha J, et al. Identification of differential hepatic proteins in rare minnow (Gobiocypris rarus) exposed to pentachlorophenol (PCP) by proteomic analysis[J]. Toxicology Letters, 2010, 199(1):69-79

    Google Scholar Pub Med

    刘征涛, 王晓南, 闫振广, 等. "三门六科"水质基准最少毒性数据需求原则[J]. 环境科学研究, 2012, 25(12):1364-1369 Liu Z T, Wang X N, Yan Z G, et al. Discussion of minimum "3 Phyla and 6 Families" toxicity data requirements for deriving water quality criteria[J]. Research of Environmental Sciences, 2012, 25(12):1364-1369(in Chinese)

    Google Scholar Pub Med

    Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:Data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1-12):192-202

    Google Scholar Pub Med

    Maltby L, Blake N, Brock T C M, et al. Insecticide species sensitivity distributions:Importance of test species selection and relevance to aquatic ecosystems[J]. Environmental Toxicology and Chemistry, 2005, 24(2):379-388

    Google Scholar Pub Med

    Xi Y, Li D, San W. Exposure to the endocrine disruptor nonylphenol alters structure and function of thyroid gland in rats[J]. Regulatory Peptides, 2013, 185:52-56

    Google Scholar Pub Med

    刘萍, 李正炎, 李江玲. 酚类污染物对金鱼卵黄蛋白原诱导的雌激素效应研究[J]. 中国海洋大学学报:自然科学版, 2010, 40(11):134-140 Liu P, Li Z Y, Li J L. Estrogenic effects of vitellogenin induction in goldfish caused by phenolic compounds[J]. Periodical of Ocean University of China, 2010, 40(11):134-140(in Chinese)

    Google Scholar Pub Med

    胡双庆, 李延, 王珺, 等. 壬基酚对鲫鱼(Carassius auratus)巨噬细胞的免疫毒性[J]. 南京大学学报:自然科学版, 2004, 40(3):341-348 Hu S Q, Li Y, Wang J, et al. Immunotoxicity of nonylphenol to macrophages in fish, Carassius auratus[J]. Journal of Nanjing University:Natural Science, 2004, 40(3):341-348(in Chinese)

    Google Scholar Pub Med

    张毅, 张高峰, 魏华. 壬基酚对鲫鱼原代肝细胞增殖和抗氧化功能的影响[J]. 应用生态学报, 2009, 20(2):352-357 Zhang Y, Zhang G F, Wei H. Effects of nonylphenol on proliferation and anti-oxidative functions of Carassius auratus primary culture hepatecyte[J]. Chinese Journal of Applied Ecology, 2009, 20(2):352-357(in Chinese)

    Google Scholar Pub Med

    左明杰, 洪万树, 周理斌. 壬基酚对中华乌塘鳢精子发生及活力的影响[J]. 厦门大学学报:自然科学版, 2010, 49(4):579-584 Zuo M J, Hong W S, Zhou L B. Effects of nonylphenol on spermatogenesis and sperm motility in Bostrichthys sinensis Lacépède[J]. Journal of Xiamen University:Natural Science, 2010, 49(4):579-584(in Chinese)

    Google Scholar Pub Med

    Sun H, Giesy J P, Jin X, et al. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China[J]. Science of the Total Environment, 2017, 586:163-173

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2635) PDF downloads(77) Cited by(0)

Access History

Ecological Risk Assessment of Nonylphenol in Surface Waters of the Yangtze River Delta Based on Species Sensitivity Distribution Model

Fund Project:

Abstract: Nonylphenol (NP) is a typical type of persistent organic pollutants (POPs) with endocrine-disrupting effect. Its ecological risk has caused increasing concerns owing to its degradation-resistance, bioaccumulation, and widespread distribution in the environment. The species sensitivity distribution (SSD) method has been widely used for establishing water quality criteria (WQC) and performing ecological risk assessment (ERA) of the water environment. However, the selected sensitive species may exhibit different toxicity sensitivity in different geographical regions, which would affect the results of WQC and ERA. In this study, SSD was applied to calculate the predicted no effect concentrations (PNECs) based on the acute and chronic toxicity data of the general sensitive species and native sensitive species in China. The results showed that there was little difference between the PNECs derived from the general sensitive species and native sensitive species based on the acute toxicity data, which indicated that the sensitivity of native species towards the acute toxicity effect of NP is similar to that of general species. However, the PNECs based on the chronic toxicity data were quite different, and the Chinese native species appeared to be more sensitive than general species to the chronic toxicity effect of NP. As a result, direct use of the PNECs derived from non-local species may lead to insufficient protection of Chinese native species. Based on the PNECs derived from the acute and chronic toxicity data, the risk quotient (RQ) method was used to characterize the ecological risk of NP in the surface waters of Yangtze River Delta. The results showed that the RQ based on PNECs derived from the acute data and chronic data of general sensitive species may lead to an underestimation of the ecological risk. The mean RQ values based on the PNECs derived from the chronic data of Chinese native sensitive species ranged from 0.23 to 1.55. Luoma Lake was found at a high risk, and the maximum RQ values of Taihu Lake and Yangtze River (Nanjing) exceeded 1, indicating the high risk of the individual areas which deserve further attentions. In conclusion, the chronic toxic effect of NP on Chinese native aquatic organisms can be identified, and continuous attention should be paid to the long-term adverse effect of NP, for which actions should be taken to ensure the health of the aquatic ecosystem.

Reference (92)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint