典型药物与个人护理品(PPCPs)的厌氧降解转化研究进展

孙悦宏, 熊倩, 吴亨宇, 陈铨乐, 吴丹, 刘有胜, 应光国. 典型药物与个人护理品(PPCPs)的厌氧降解转化研究进展[J]. 生态毒理学报, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001
引用本文: 孙悦宏, 熊倩, 吴亨宇, 陈铨乐, 吴丹, 刘有胜, 应光国. 典型药物与个人护理品(PPCPs)的厌氧降解转化研究进展[J]. 生态毒理学报, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001
Sun Yuehong, Xiong Qian, Wu Hengyu, Chen Quanle, Wu Dan, Liu Yousheng, Ying Guangguo. Research Advances on Anaerobic Microbial Degradation of Typical Pharmaceuticals and Personal Care Products (PPCPs)[J]. Asian journal of ecotoxicology, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001
Citation: Sun Yuehong, Xiong Qian, Wu Hengyu, Chen Quanle, Wu Dan, Liu Yousheng, Ying Guangguo. Research Advances on Anaerobic Microbial Degradation of Typical Pharmaceuticals and Personal Care Products (PPCPs)[J]. Asian journal of ecotoxicology, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001

典型药物与个人护理品(PPCPs)的厌氧降解转化研究进展

    作者简介: 孙悦宏(1999—),男,硕士研究生,研究方向为典型药物与个人护理品的厌氧降解,E-mail: yuehong.sun@m.scnu.edu.cn
    通讯作者: 熊倩, E-mail: qian.xiong010@163.com 刘有胜, E-mail: yousheng.liu@m.scnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41877359,42107433);广东省自然科学基金资助项目(2020A1515110926)

  • 中图分类号: X171.5

Research Advances on Anaerobic Microbial Degradation of Typical Pharmaceuticals and Personal Care Products (PPCPs)

    Corresponding authors: Xiong Qian, qian.xiong010@163.com ;  Liu Yousheng, yousheng.liu@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 药物与个人护理品(pharmaceuticals and personal care products, PPCPs)的污染和环境归趋问题备受关注。其中厌氧降解转化作为疏水性PPCPs在自然环境介质中的主要消解方式尤为重要。本文以典型PPCPs为例,分析了城市污水处理厌氧工艺对PPCPs的去除情况,主要包括污泥吸附和厌氧生物转化;总结了化学结构、微生物、碳源和氧化还原电位等多种因素对PPCPs厌氧降解转化效率的影响,其中氧化还原电位发挥重要作用,因其与氧化还原酶密切相关;同时,重点归纳了磺胺甲噁唑、苯并三唑和三氯生等3种典型PPCPs在不同氧化还原电位下的厌氧降解转化途径,并对PPCPs厌氧微生物降解的未来研究重点和发展方向进行展望:(1)强化PPCPs的有机质-厌氧微生物共代谢降解机制研究;(2)聚焦PPCPs厌氧降解菌群筛选及其功能研究;(3)深入开展厌氧降解菌群培养体系构建和原位厌氧降解研究。本研究相关结果有望为PPCPs的污染防治提供科学依据。
  • 加载中
  • Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(Suppl 6): 907-938
    Wang Y F, Huang H O, Wei X M. Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes[J]. Chemical Engineering Journal, 2018, 333: 66-75
    Yu X, Sui Q, Lyu S G, et al. Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China[J]. Environment International, 2020, 135: 105404
    Kibuye F A, Gall H E, Elkin K R, et al. Fate of pharmaceuticals in a spray-irrigation system: From wastewater to groundwater[J]. Science of the Total Environment, 2019, 654: 197-208
    Papaioannou D, Koukoulakis P H, Papageorgiou M, et al. Investigation of pharmaceutical and personal care product interactions of soil and beets (Beta vulgaris L.) under the effect of wastewater reuse[J]. Chemosphere, 2020, 238: 124553
    Kim H, Homan M. Evaluation of pharmaceuticals and personal care products (PPCPs) in drinking water originating from Lake Erie[J]. Journal of Great Lakes Research, 2020, 46: 1321-1330
    Lu W W, Wang M, Wu J Q, et al. Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil[J]. Environmental Pollution, 2020, 260: 113998
    Vuckovic D, Tinoco A I, Ling L, et al. Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals[J]. Science, 2022, 376(6593): 644-648
    Liu F, Zhang Y, Wang F. Environmental relevant concentrations of triclosan affected developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos[J]. Environmental Toxicology, 2022, 37(4): 848-857
    王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展[J]. 四川师范大学学报(自然科学版), 2020, 43(2): 143-172, 140 Wang J L. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review[J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(2): 143-172, 140(in Chinese)
    Schmidt N, Page D, Tiehm A. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (Ⅳ), iron (Ⅲ) and sulfate as electron acceptors[J]. Journal of Contaminant Hydrology, 2017, 203: 62-69
    Yang C W, Chen Y E, Chang B. Microbial communities associated with acetaminophen biodegradation from mangrove sediment[J]. Sustainability, 2020, 12(13): 5410
    Liu Y S, Ying G G, Shareef A, et al. Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions[J]. Water Research, 2011, 45(16): 5005-5014
    Carr D L, Morse A N, Zak J C, et al. Microbially mediated degradation of common pharmaceuticals and personal care products in soil under aerobic and reduced oxygen conditions[J]. Water, Air, & Soil Pollution, 2011, 216(1): 633-642
    Chang B, Chao W, Yeh S, et al. Biodegradation of sulfamethoxazole in milkfish (Chanos chanos) pond sediments[J]. Applied Sciences, 2019, 9(19): 4000
    Li Y D, Bi E P, Chen H H. Sorption behavior of ofloxacin to kaolinite: Effects of pH, ionic strength, and Cu(Ⅱ)[J]. Water, Air, & Soil Pollution, 2017, 228(1): 46
    Samaras V G, Stasinakis A S, Mamais D, et al. Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion[J]. Journal of Hazardous Materials, 2013, 244-245: 259-267
    Gornik T, Kovacic A, Heath E, et al. Biotransformation study of antidepressant sertraline and its removal during biological wastewater treatment[J]. Water Research, 2020, 181: 115864
    Liu Y S, Ying G G, Shareef A, et al. Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant[J]. Environmental Pollution, 2012, 165: 225-232
    Polesel F, Andersen H R, Trapp S, et al. Removal of antibiotics in biological wastewater treatment systems—A critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X)[J]. Environmental Science & Technology, 2016, 50(19): 10316-10334
    Wang L, Qiang Z M, Li Y G, et al. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics[J]. Journal of Environmental Sciences, 2017, 56: 263-271
    Zhang H Q, Jia Y Y, Khanal S K, et al. Understanding the role of extracellular polymeric substances on ciprofloxacin adsorption in aerobic sludge, anaerobic sludge, and sulfate-reducing bacteria sludge systems[J]. Environmental Science & Technology, 2018, 52(11): 6476-6486
    Jia Y Y, Zhang H Q, Khanal S K, et al. Insights into pharmaceuticals removal in an anaerobic sulfate-reducing bacteria sludge system[J]. Water Research, 2019, 161: 191-201
    Ashfaq M, Li Y, Wang Y W, et al. Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China[J]. Water Research, 2017, 123: 655-667
    Hou J, Chen Z Y, Gao J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Research, 2019, 159: 511-520
    Vieno N, Tuhkanen T, Kronberg L. Elimination of pharmaceuticals in sewage treatment plants in Finland[J]. Water Research, 2007, 41(5): 1001-1012
    Martín J, Santos J L, Aparicio I, et al. Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting[J]. The Science of the Total Environment, 2015, 503-504: 97-104
    Falås P, Wick A, Castronovo S, et al. Tracing the limits of organic micropollutant removal in biological wastewater treatment[J]. Water Research, 2016, 95: 240-249
    Yang J X, Luo Y J, Fu X H, et al. Unexpected degradation and deiodination of diatrizoate by the Cu(Ⅱ)/S(Ⅳ) system under anaerobic conditions[J]. Water Research, 2021, 198: 117137
    Cheng S S, Ho C Y, Wu J H. Pilot study of UASB process treating PTA manufacturing wastewater[J]. Water Science and Technology, 1997, 36(6-7): 73-82
    Liu S M, Wu C H, Huang H J. Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions[J]. Chemosphere, 1998, 36(10): 2345-2357
    Musson S E, Campo P, Tolaymat T, et al. Assessment of the anaerobic degradation of six active pharmaceutical ingredients[J]. The Science of the Total Environment, 2010, 408(9): 2068-2074
    Okey R W, Stensel H D. A QSAR-based biodegradability model—A QSBR[J]. Water Research, 1996, 30(9): 2206-2214
    Zhang A Q, Han S K, Ma J, et al. Aerobic microbial degradation of aromatic sulfur-containing compounds and effect of chemical structures[J]. Chemosphere, 1998, 36(15): 3033-3041
    Shin M, Duncan B, Seto P, et al. Dynamics of selected pre-existing polybrominated diphenylethers (PBDEs) in municipal wastewater sludge under anaerobic conditions[J]. Chemosphere, 2010, 78(10): 1220-1224
    Kim S, Rossmassler K, Broeckling C D, et al. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products[J]. Water Research, 2017, 125: 227-236
    Sella C F, Carneiro R B, Sabatini C A, et al. Can different inoculum sources influence the biodegradation of sulfamethoxazole antibiotic during anaerobic digestion?[J]. Brazilian Journal of Chemical Engineering, 2022, 39(1): 35-46
    Wolfson S J, Porter A W, Villani T S, et al. The antihistamine diphenhydramine is demethylated by anaerobic wastewater microorganisms[J]. Chemosphere, 2018, 202: 460-466
    Chopra S, Kumar D. Characterization, optimization and kinetics study of acetaminophen degradation by Bacillus drentensis strain S1 and waste water degradation analysis[J]. Bioresources and Bioprocessing, 2020, 7(14): 113-120
    Ouyang W Y, Birkigt J, Richnow H H, et al. Anaerobic transformation and detoxification of sulfamethoxazole by sulfate-reducing enrichments and Desulfovibrio vulgaris[J]. Environmental Science & Technology, 2021, 55(1): 271-282
    吴丹, 孙悦宏, 李浩, 等. 有机紫外吸收剂BP-3的厌氧污泥降解特性[J]. 环境科学学报, 2022, 42(10): 254-263

    Wu D, Sun Y H, Li H, et al. Anaerobic biodegradation characteristics of organic UV filter BP-3 in sludge[J]. Acta Scientiae Circumstantiae, 2022, 42(10): 254-263(in Chinese)

    Hart O E, Halden R U. Modeling wastewater temperature and attenuation of sewage-borne biomarkers globally[J]. Water Research, 2020, 172: 115473
    Carballa M, Omil F, Alder A C, et al. Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2006, 53(8): 109-117
    Carballa M, Omil F, Ternes T, et al. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge[J]. Water Research, 2007, 41(10): 2139-2150
    Mao F, Liu X H, Wu K, et al. Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4[J]. Biodegradation, 2018, 29(2): 129-140
    Lützow M V, Kögel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review[J]. European Journal of Soil Science, 2006, 57(4): 426-445
    Zhang C F, Zhang D D, Xiao Z X, et al. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol[J]. Chemosphere, 2015, 131: 110-116
    Zhang D D, Zhang C F, Li Z L, et al. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization[J]. Bioresource Technology, 2014, 164: 232-240
    Zhang D D, Zhang C F, Xiao Z X, et al. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium[J]. Journal of Bioscience and Bioengineering, 2015, 119(2): 188-194
    Wu C Y, Zhuang L, Zhou S G, et al. Humic substance-mediated reduction of iron(Ⅲ) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5[J]. Microbial Biotechnology, 2013, 6(2): 141-149
    Lau M P, Sander M, Gelbrecht J, et al. Solid phases as important electron acceptors in freshwater organic sediments[J]. Biogeochemistry, 2015, 123(1): 49-61
    He K, Yin Q D, Liu A K, et al. Enhanced anaerobic degradation of amide pharmaceuticals by dosing ferroferric oxide or anthraquinone-2,6-disulfonate[J]. Journal of Water Process Engineering, 2017, 18: 192-197
    Baquero E S, Rodríguez D C, Peñuela G A. Individual and synergic effect of carbamazepine and diclofenac in the removal of organic matter from an expanded granular bed anaerobic reactor[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2022, 85(5): 1620-1635
    He Y J, Sutton N B, Rijnaarts H H M, et al. Pharmaceutical biodegradation under three anaerobic redox conditions evaluated by chemical and toxicological analyses[J]. The Science of the Total Environment, 2018, 618: 658-664
    de Wilt A, He Y J, Sutton N, et al. Sorption and biodegradation of six pharmaceutically active compounds under four different redox conditions[J]. Chemosphere, 2018, 193: 811-819
    Martins M, Sanches S, Pereira I A C. Anaerobic biodegradation of pharmaceutical compounds: New insights into the pharmaceutical-degrading bacteria[J]. Journal of Hazardous Materials, 2018, 357: 289-297
    Carneiro R B, Sabatini C A, Santos-Neto Á J, et al. Feasibility of anaerobic packed and structured-bed reactors for sulfamethoxazole and ciprofloxacin removal from domestic sewage[J]. The Science of the Total Environment, 2019, 678: 419-429
    Jia Y Y, Khanal S K, Zhang H Q, et al. Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system[J]. Water Research, 2017, 119: 12-20
    Mohatt J L, Hu L H, Finneran K T, et al. Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions[J]. Environmental Science & Technology, 2011, 45(11): 4793-4801
    Barbieri M, Carrera J, Sanchez-Vila X, et al. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material[J]. Journal of Contaminant Hydrology, 2011, 126(3-4): 330-345
    Struk-Sokołowska J, Kotowska U, Piekutin J, et al. Analysis of 1H-benzotriazole removal efficiency from wastewater in individual process phases of a sequencing batch reactor SBR[J]. Water Resources and Industry, 2022, 28: 100182
    Loos R, Locoro G, Comero S, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J]. Water Research, 2010, 44(14): 4115-4126
    Parajulee A, Lei Y D, De Silva A O, et al. Assessing the source-to-stream transport of benzotriazoles during rainfall and snowmelt in urban and agricultural watersheds[J]. Environmental Science & Technology, 2017, 51(8): 4191-4198
    Asimakopoulos A G, Bletsou A A, Wu Q, et al. Determination of benzotriazoles and benzothiazoles in human urine by liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2013, 85(1): 441-448
    Liang X F, Wang M, Chen X, et al. Endocrine disrupting effects of benzotriazole in rare minnow (Gobiocypris rarus) in a sex-dependent manner[J]. Chemosphere, 2014, 112: 154-162
    Liu Y S, Ying G G, Shareef A, et al. Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions[J]. Journal of Contaminant Hydrology, 2013, 151: 131-139
    Alotaibi M D, Patterson B M, McKinley A J, et al. Fate of benzotriazole and 5-methylbenzotriazole in recycled water recharged into an anaerobic aquifer: Column studies[J]. Water Research, 2015, 70: 184-195
    Ding T D, Lin K D, Bao L J, et al. Biouptake, toxicity and biotransformation of triclosan in diatom Cyclotella sp. and the influence of humic acid[J]. Environmental Pollution, 2018, 234: 231-242
    Ying G G, Yu X Y, Kookana R S. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling[J]. Environmental Pollution, 2007, 150(3): 300-305
    Gangadharan Puthiya Veetil P, Vijaya Nadaraja A, Bhasi A, et al. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions[J]. Applied Biochemistry and Biotechnology, 2012, 167(6): 1603-1612
    Gonzalez-Gil L, Carballa M, Lema J M. Cometabolic enzymatic transformation of organic micropollutants under methanogenic conditions[J]. Environmental Science & Technology, 2017, 51(5): 2963-2971
  • 加载中
计量
  • 文章访问数:  1483
  • HTML全文浏览数:  1483
  • PDF下载数:  93
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-17
孙悦宏, 熊倩, 吴亨宇, 陈铨乐, 吴丹, 刘有胜, 应光国. 典型药物与个人护理品(PPCPs)的厌氧降解转化研究进展[J]. 生态毒理学报, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001
引用本文: 孙悦宏, 熊倩, 吴亨宇, 陈铨乐, 吴丹, 刘有胜, 应光国. 典型药物与个人护理品(PPCPs)的厌氧降解转化研究进展[J]. 生态毒理学报, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001
Sun Yuehong, Xiong Qian, Wu Hengyu, Chen Quanle, Wu Dan, Liu Yousheng, Ying Guangguo. Research Advances on Anaerobic Microbial Degradation of Typical Pharmaceuticals and Personal Care Products (PPCPs)[J]. Asian journal of ecotoxicology, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001
Citation: Sun Yuehong, Xiong Qian, Wu Hengyu, Chen Quanle, Wu Dan, Liu Yousheng, Ying Guangguo. Research Advances on Anaerobic Microbial Degradation of Typical Pharmaceuticals and Personal Care Products (PPCPs)[J]. Asian journal of ecotoxicology, 2023, 18(2): 64-74. doi: 10.7524/AJE.1673-5897.20221017001

典型药物与个人护理品(PPCPs)的厌氧降解转化研究进展

    通讯作者: 熊倩, E-mail: qian.xiong010@163.com ;  刘有胜, E-mail: yousheng.liu@m.scnu.edu.cn
    作者简介: 孙悦宏(1999—),男,硕士研究生,研究方向为典型药物与个人护理品的厌氧降解,E-mail: yuehong.sun@m.scnu.edu.cn
  • 1. 华南师范大学环境学院, 广州 510006;
  • 2. 华南师范大学广东省化学品污染与环境安全重点实验室, 环境理论化学教育部重点实验室, 广州 510006;
  • 3. 中国水产科学研究院南海水产研究所/农业农村部南海渔业资源环境科学观测实验站/广东省渔业生态环境重点实验室, 广州 510300
基金项目:

国家自然科学基金资助项目(41877359,42107433);广东省自然科学基金资助项目(2020A1515110926)

摘要: 药物与个人护理品(pharmaceuticals and personal care products, PPCPs)的污染和环境归趋问题备受关注。其中厌氧降解转化作为疏水性PPCPs在自然环境介质中的主要消解方式尤为重要。本文以典型PPCPs为例,分析了城市污水处理厌氧工艺对PPCPs的去除情况,主要包括污泥吸附和厌氧生物转化;总结了化学结构、微生物、碳源和氧化还原电位等多种因素对PPCPs厌氧降解转化效率的影响,其中氧化还原电位发挥重要作用,因其与氧化还原酶密切相关;同时,重点归纳了磺胺甲噁唑、苯并三唑和三氯生等3种典型PPCPs在不同氧化还原电位下的厌氧降解转化途径,并对PPCPs厌氧微生物降解的未来研究重点和发展方向进行展望:(1)强化PPCPs的有机质-厌氧微生物共代谢降解机制研究;(2)聚焦PPCPs厌氧降解菌群筛选及其功能研究;(3)深入开展厌氧降解菌群培养体系构建和原位厌氧降解研究。本研究相关结果有望为PPCPs的污染防治提供科学依据。

English Abstract

参考文献 (71)

返回顶部

目录

/

返回文章
返回