基于代谢组学技术的金刚烷胺胁迫刺参的毒性作用机制研究
Research on Toxicity Mechanism of Amantadine on Apostichopus japonicus Revealed by Metabonomics
-
摘要: 本研究基于非靶向代谢组学方法,分析了暴露于100 μg·L-1金刚烷胺下96 h的刺参代谢物组成及含量变化,以探究金刚烷胺对刺参肠道组织毒性及其相关分子机制。代谢组学结果表明,与对照组相比,金刚烷胺胁迫下,刺参肠道代谢物发生改变,共有115种差异表达代谢物,其主要功能分为二肽、类固醇、嘌呤和嘧啶。差异代谢物功能通路的富集结果表明,氨基酸代谢、脂质代谢、信号转导、核苷酸代谢和内分泌系统等生物过程受到显著影响。根据筛选出的差异代谢物的生理功能及其涉及的代谢通路分析,发现刺参信号传导和能量代谢功能受到干扰,可能由于腺苷和单磷酸腺苷(AMP)含量下降;睾酮和牛磺鹅去氧胆酸(TCDCA)含量下降可能对刺参的性别分化和胆固醇代谢产生影响;甘氨酸和脯氨酸含量上升可能是刺参胶原蛋白的降解造成的。本研究探究了金刚烷胺对刺参肠道组织毒性作用的分子机制及刺参的响应调控机制,为后期深入研究毒性机制提供理论依据。Abstract: To explore the toxicity of amantadine on intestinal tissue of Apostichopus japonicus and the related molecular mechanisms, the composition and content of metabolites were analyzed based on non-targeted metabolomics methods after the sea cucumbers were exposed to 100 μg·L-1 amantadine for 96 h. Metabolomics results showed that intestinal metabolites of A. japonicus were changed under amantadine stress, and there were 115 differentially expressed metabolites compared with the control group, whose main functions were dipeptide, steroid, purine and pyrimidine. The KEGG enrichment analysis showed that biological processes were significantly affected, such as amino acid metabolism, lipid metabolism, signal transduction, nucleotide metabolism and the endocrine system. According to the physiological functions of the selected differential metabolites and the metabolic pathways involved, it was found that the signal transduction and energy metabolism were disturbed, possibly due to the decrease of adenosine and adenosine monophosphate (AMP) content. The decrease in testosterone and taurochenodeoxycholic acid (TCDCA) content affected sex differentiation and cholesterol metabolism of A. japonicus. The increase in glycine and proline content might be caused by the degradation of the collagen of A. japonicus. This research explored the molecular mechanism of amantadine on intestinal tissue and the response regulation mechanism of A. japonicus, and provided the theoretical basis for further research on the toxic mechanism of amantadine.
-
Key words:
- amantamine /
- Apostichopus japonicas /
- metabolomics /
- differential metabolite /
- metabolic pathway
-
Byrne M, Rowe F, Uthicke S. Molecular taxonomy, phylogeny and evolution in the family Stichopodidae (Aspidochirotida: Holothuroidea) based on COI and 16S mitochondrial DNA[J]. Molecular Phylogenetics and Evolution, 2010, 56(3): 1068-1081 Li Y L, Wang R J, Xun X G, et al. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation[J]. Cell Discovery, 2018, 4(1): 1-17 Yang H S, Hamel J, Mercier A. The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture[M]. New York: American: Academic Press, 2015: 25-35 Alves Galvão M G, Rocha Crispino Santos M A, Alves da Cunha A J. Amantadine and rimantadine for influenza A in children and the elderly[J]. The Cochrane Database of Systematic Reviews, 2014, 2014(11): CD002745 Lang G, Narayan O, Rouse B T. Prevention of malignant avian influenza by 1-adamantanamine hydrochloride[J]. Archiv Für Die Gesamte Virusforschung, 1970, 32(2): 171-184 Peng Q C, Song J M, Li X G, et al. Biogeochemical characteristics and ecological risk assessment of pharmaceutically active compounds (PhACs) in the surface seawaters of Jiaozhou Bay, North China[J]. Environmental Pollution, 2019, 255(Pt 1): 113247 Zhang R H, Du J, Dong X B, et al. Occurrence and ecological risks of 156 pharmaceuticals and 296 pesticides in seawater from mariculture areas of Northeast China[J]. The Science of the Total Environment, 2021, 792: 148375 Xu Y J, Ren C B, Han D F, et al. Analysis of amantadine in Laminaria japonica and seawater of Daqin Island by ultra high performance liquid chromatography with positive electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2019, 1126-1127: 121697 齐刚, 张秀芹, 刘婷, 等. 超高效液相色谱串联质谱法检测鸡蛋中的金刚烷胺和金刚乙胺[J]. 现代畜牧科技, 2017(1): 4-5, 7 Qi G, Zhang X Q, Liu T, et al. The amantadine and rimantadine detection from eggs with ultra high performance liquid chromatography tandem mass spectrometry[J]. Modern Animal Husbandry Science & Technology, 2017(1): 4-5, 7(in Chinese)
郑伟云. 金刚烷胺与藻类质量安全相关性研究[D]. 烟台: 烟台大学, 2019: 29-33 任传博, 王倩, 高永刚, 等. 响应面法优化刺参(Apostichopus japonicus)中金刚烷胺检测[J]. 食品安全质量检测学报, 2019, 10(10): 2967-2975 Ren C B, Wang Q, Gao Y G, et al. Optimization the detection of amantadine from Apostichopus japonicus by response surface methodology[J]. Journal of Food Safety & Quality, 2019, 10(10): 2967-2975(in Chinese)
Peng Q C, Song J M, Li X G, et al. Biogeochemical characteristics and ecological risk assessment of pharmaceutically active compounds (PhACs) in the surface seawaters of Jiaozhou Bay, North China[J]. Environmental Pollution, 2019, 255(Pt 1): 113247 Wu Y L, Chen R X, Xue Y, et al. Simultaneous determination of amantadine, rimantadine and memantine in chicken muscle using multi-walled carbon nanotubes as a reversed-dispersive solid phase extraction sorbent[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2014, 965: 197-205 Pan Y T, Wang Z P, Duan C F, et al. Comparison of two fluorescence quantitative immunochromatographic assays for the detection of amantadine in chicken muscle[J]. Food Chemistry, 2022, 377: 131931 Zhang T, Zhang L, Liu J X, et al. Development of a molecularly imprinted microspheres-based microplate fluorescence method for detection of amantadine and rimantadine in chicken[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2021, 38(7): 1136-1147 李诗言, 王扬, 周凡, 等. 高效液相色谱-串联质谱法快速测定乌鳢肌肉中金刚烷胺、金刚乙胺和美金刚残留[J]. 中国渔业质量与标准, 2018, 8(5): 64-72 Li S Y, Wang Y, Zhou F, et al. Rapid and simultaneous determination of amantadine, rimantadine and memantine in Ophiocephalus argus Cantor meat by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Fishery Quality and Standards, 2018, 8(5): 64-72(in Chinese)
郑伟云, 孙利芹, 田秀慧, 等. 金刚烷胺在菊花江蓠体内的富集和消除规律研究[J]. 食品安全质量检测学报, 2019, 10(1): 226-233 Zheng W Y, Sun L Q, Tian X H, et al. Rules of accumulation and elimination of amantadine residue in Gracilaria lichenoides[J]. Journal of Food Safety & Quality, 2019, 10(1): 226-233(in Chinese)
Scalzo F, Boisvert M, Wang W Q. Amantadine-induced structural and motor effects in developing zebrafish[J]. Neurotoxicology and Teratology, 2011, 33(4): 510 Cappello T, de Marco G, Oliveri Conti G, et al. Time-dependent metabolic disorders induced by short-term exposure to polystyrene microplastics in the Mediterranean mussel Mytilus galloprovincialis[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111780 Want E J, Masson P, Michopoulos F, et al. Global metabolic profiling of animal and human tissues via UPLC-MS[J]. Nature Protocols, 2013, 8(1): 17-32 Zhao H, French J B, Fang Y, et al. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans[J]. Chemical Communications, 2013, 49(40): 4444-4452 Stasolla C, Katahira R, Thorpe T A, et al. Purine and pyrimidine nucleotide metabolism in higher plants[J]. Journal of Plant Physiology, 2003, 160(11): 1271-1295 Liu J H, Zhao Y, Ding Z, et al. Iron accumulation with age alters metabolic pattern and circadian clock gene expression through the reduction of AMP-modulated histone methylation[J]. The Journal of Biological Chemistry, 2022, 298(6): 101968 Olabiyi A A, Carvalho F B, Bottari N B, et al. Tiger nut and walnut extracts modulate extracellular metabolism of ATP and adenosine through the NOS/cGMP/PKG signalling pathway in kidney slices[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2018, 43: 140-149 Wan X X, Belanger K, Widen S G, et al. Genes of the cGMP-PKG-Ca2+ signaling pathway are alternatively spliced in cardiomyopathy: Role of RBFOX2[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2020, 1866(3): 165620 Noppe H, Le Bizec B, Verheyden K, et al. Novel analytical methods for the determination of steroid hormones in edible matrices[J]. Analytica Chimica Acta, 2008, 611(1): 1-16 Streck G. Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment[J]. Trends in Analytical Chemistry, 2009, 28(6): 635-652 Guedes-Alonso R, Montesdeoca-Esponda S, Sosa-Ferrera Z, et al. Liquid chromatography methodologies for the determination of steroid hormones in aquatic environmental systems[J]. Trends in Environmental Analytical Chemistry, 2014, 3-4: 14-27 Zheng W L, Feng N N, Wang Y, et al. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review[J]. Food and Chemical Toxicology, 2019, 126: 262-276 Qi Y C, Duan G Z, Mao W, et al. Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway[J]. Chinese Journal of Natural Medicines, 2020, 18(12): 898-906 Charkoftaki G, Tan W Y, Berrios-Carcamo P, et al. Liver metabolomics identifies bile acid profile changes at early stages of alcoholic liver disease in mice[J]. Chemico-Biological Interactions, 2022, 360: 109931 Sokanovic S J, Baburski A Z, Janjic M M, et al. The opposing roles of nitric oxide and cGMP in the age-associated decline in rat testicular steroidogenesis[J]. Endocrinology, 2013, 154(10): 3914-3924 Augusti-Tocco G, De Petrocellis B, Scarano E. Effects of amantadine on the early embryonic development of the sea urchin[J]. Developmental Biology, 1969, 19(4): 341-357 Suwalsky M, Jemiola-Rzeminska M, Altamirano M, et al. Interactions of the antiviral and antiparkinson agent amantadine with lipid membranes and human erythrocytes[J]. Biophysical Chemistry, 2015, 202: 13-20 Yancey P H, Clark M E, Hand S C, et al. Living with water stress: Evolution of osmolyte systems[J]. Science, 1982, 217(4566): 1214-1222 Nguyen T V, Ragg N L C, Alfaro A C, et al. Physiological stress associated with mechanical harvesting and transport of cultured mussels (Perna canaliculus): A metabolomics approach[J]. Aquaculture, 2020, 529: 735657 Sun X J, Tu K, Li L, et al. Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia[J]. Marine Environmental Research, 2021, 168: 105317 Xu Y J, Liu H, Han D F, et al. Metabolomic alterations in the digestive system of the Mantis shrimp Oratosquilla oratoria following short-term exposure to cadmium[J]. Frontiers in Physiology, 2021, 12: 706579 Xu D F, Zheng X X, Li C H, et al. Insights into the response mechanism of Litopenaeus vannamei exposed to cold stress during live transport combining untargeted metabolomics and biochemical assays[J]. Journal of Thermal Biology, 2022, 104: 103200 Li L, Chen M Y, Storey K B. Metabolic response of longitudinal muscles to acute hypoxia in sea cucumber Apostichopus japonicus (Selenka): A metabolome integrated analysis[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 29: 235-244
计量
- 文章访问数: 1097
- HTML全文浏览数: 1097
- PDF下载数: 105
- 施引文献: 0