基于宏基因组学解析不同污水处理系统的耐药基因组分布特征和传播机制

苏志国, 陈伟东, 郑宇涵, 危婕, 李菲菲, 陈嘉瑜, 陈吕军, 温东辉. 基于宏基因组学解析不同污水处理系统的耐药基因组分布特征和传播机制[J]. 生态毒理学报, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001
引用本文: 苏志国, 陈伟东, 郑宇涵, 危婕, 李菲菲, 陈嘉瑜, 陈吕军, 温东辉. 基于宏基因组学解析不同污水处理系统的耐药基因组分布特征和传播机制[J]. 生态毒理学报, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001
Su Zhiguo, Chen Weidong, Zheng Yuhan, Wei Jie, Li Feifei, Chen Jiayu, Chen Lyujun, Wen Donghui. Distribution Characteristics and Transmission Mechanism of Antibiotic Resistome in Different Wastewater Treatment Systems Based on Metagenomic Analysis[J]. Asian journal of ecotoxicology, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001
Citation: Su Zhiguo, Chen Weidong, Zheng Yuhan, Wei Jie, Li Feifei, Chen Jiayu, Chen Lyujun, Wen Donghui. Distribution Characteristics and Transmission Mechanism of Antibiotic Resistome in Different Wastewater Treatment Systems Based on Metagenomic Analysis[J]. Asian journal of ecotoxicology, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001

基于宏基因组学解析不同污水处理系统的耐药基因组分布特征和传播机制

    作者简介: 苏志国(1994—),男,博士,研究方向为环境微生物学,E-mail: suzhiguo94@163.com
    通讯作者: 温东辉, E-mail: dhwen@pku.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(52170185,52070111);国家自然科学基金重点项目(51938001);中国博士后科学基金面上项目(2022M721815);清华大学“水木学者”计划

  • 中图分类号: X171.5

Distribution Characteristics and Transmission Mechanism of Antibiotic Resistome in Different Wastewater Treatment Systems Based on Metagenomic Analysis

    Corresponding author: Wen Donghui, dhwen@pku.edu.cn
  • Fund Project:
  • 摘要: 污水处理厂是向水环境中传播抗生素抗性基因(antibiotic resistance genes, ARGs)的热点。与城镇污水相比,工业园区废水成分复杂、污染物浓度高,更有利于ARGs的增殖和扩散。为探究不同类型废水环境的ARGs组成特征和潜在的传播风险,采用宏基因组学技术分别对城镇生活污水处理系统(W1-SD)、工业园区废水处理系统(W1-SI)和2个城镇综合污水处理系统(W2-LH1和W2-LH2)进行取样调查。结果显示,多重耐药类、磺胺类、氨基糖苷类和杆菌肽类抗性基因是废水环境中的主要耐药类型,Ⅰ型整合子、转座酶基因等可移动遗传元件(MGEs)对sul1aadAereA等基因亚型的增殖扩散发挥了关键作用,通过序列分型发现质粒型ARGs的相对丰度更高,尤其是在进水样品中,氨基糖苷类和磺胺类等抗性基因是主要的质粒型ARGs;污水处理过程削减了ARGs多样性,且经过二次沉淀工艺,ARGs丰度均明显降低,但在W1-SI和W2-LH2中,后续的深度处理工艺又使ARGs丰度升高;与城镇污水处理系统相比,W1-SI的ARGs组成更为稳定,最终排水中富集了较高丰度的质粒型ARGs,同时识别到了高频率的潜在水平基因转移事件和2条携带多种抗性基因的重叠群序列(contigs),表明工业园区废水排放具有更高的ARGs传播风险。本研究丰富了不同类型废水环境耐药基因组的已有认知,为有效管控废水排放特别是工业园区废水排放的健康风险提供了科学依据。
  • 加载中
  • Qin K N, Wei L L, Li J J, et al. A review of ARGs in WWTPs: Sources, stressors and elimination[J]. Chinese Chemical Letters, 2020, 31(10): 2603-2613
    Bengtsson-Palme J, Milakovic M, Švecová H, et al. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities[J]. Water Research, 2019, 162: 437-445
    Yan Z Z, Chen Q L, Zhang Y J, et al. Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution[J]. Environment International, 2019, 132: 105106
    Zheng B W, Liu W H, Xu H, et al. Occurrence and distribution of antimicrobial resistance genes in the soil of an industrial park in China: A metagenomics survey[J]. Environmental Pollution, 2021, 273: 116467
    Milaković M, Vestergaard G, González-Plaza J J, et al. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments[J]. The Science of the Total Environment, 2020, 706: 136001
    Tang Y, Liang Z S, Li G Y, et al. Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water[J]. Chemosphere, 2021, 283: 131224
    Ding H J, Qiao M, Zhong J Y, et al. Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake[J]. Water Research, 2020, 174: 115603
    Karkman A, Do T T, Walsh F, et al. Antibiotic-resistance genes in waste water[J]. Trends in Microbiology, 2018, 26(3): 220-228
    Pal C, Bengtsson-Palme J, Kristiansson E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16: 964
    Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890
    Bolger A M, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120
    Langmead B, Salzberg S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359
    Li D H, Liu C M, Luo R B, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676
    Gurevich A, Saveliev V, Vyahhi N, et al. QUAST: Quality assessment tool for genome assemblies[J]. Bioinformatics, 2013, 29(8): 1072-1075
    Hyatt D, Chen G L, Locascio P F, et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119
    Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: Accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150-3152
    Patro R, Duggal G, Love M I, et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nature Methods, 2017, 14(4): 417-419
    Yin X L, Jiang X T, Chai B L, et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes[J]. Bioinformatics, 2018, 34(13): 2263-2270
    Krawczyk P S, Lipinski L, Dziembowski A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures[J]. Nucleic Acids Research, 2018, 46(6): e35
    Hendriksen R S, Munk P, Njage P, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage[J]. Nature Communications, 2019, 10(1): 1124
    Du D J, Wang-Kan W K, Neuberger A, et al. Multidrug efflux pumps: Structure, function and regulation[J]. Nature Reviews Microbiology, 2018, 16(9): 523-539
    洪颖忻, 吴浪, 张立秋, 等. 制药废水处理系统中抗生素抗性基因的研究进展[J]. 工业水处理, 2022, 42(4): 39-45

    Hong Y X, Wu L, Zhang L Q, et al. Research progress of antibiotic resistance genes in pharmaceutical wastewater treatment systems[J]. Industrial Water Treatment, 2022, 42(4): 39-45(in Chinese)

    Zheng J, Su C, Zhou J W, et al. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants[J]. Chemical Engineering Journal, 2017, 317: 309-316
    Ju F, Beck K, Yin X L, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes[J]. The ISME Journal, 2019, 13(2): 346-360
    Bao Y Y, Li F F, Chen L J, et al. Fate of antibiotics in engineered wastewater systems and receiving water environment: A case study on the coast of Hangzhou Bay, China[J]. The Science of the Total Environment, 2021, 769: 144642
    颉亚玮. 杭州湾可吸附有机卤素污染溯源和源减排工艺研究[D]. 北京: 清华大学, 2017: 25-40
    苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233

    Su Z G, Zhang Y, Dai T J, et al. Antibiotic resistance genes and class Ⅰ integron in the environment: Research progress[J]. Microbiology China, 2018, 45(10): 2217-2233(in Chinese)

    李彦媚, 赵喜红, 徐泽智, 等. 新型细菌耐药元件——整合子系统[J]. 中国抗生素杂志, 2012, 37(1): 1-7

    Li Y M, Zhao X H, Xu Z Z, et al. Novel antibiotic resistance mechanism-integron system[J]. Chinese Journal of Antibiotics, 2012, 37(1): 1-7(in Chinese)

    Qian X, Gunturu S, Sun W, et al. Long-read sequencing revealed cooccurrence, host range, and potential mobility of antibiotic resistome in cow feces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25): e2024464118
    Zhang H M, Hou M Y, Xu Y C, et al. Action and mechanism of the colistin resistance enzyme MCR-4[J]. Communications Biology, 2019, 2: 36
    Wales A D, Davies R H. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens[J]. Antibiotics, 2015, 4(4): 567-604
    Che Y, Yang Y, Xu X Q, et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2008731118
    Che Y, Xia Y, Liu L, et al. Mobile antibiotic resistome in wastewater treatment plants revealed by nanopore metagenomic sequencing[J]. Microbiome, 2019, 7(1): 44
    Lee J, Ju F, Maile-Moskowitz A, et al. Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs[J]. Water Research, 2021, 197: 117050
    Su Z G, Wen D H. Characterization of antibiotic resistance across Earth's microbial genomes[J]. The Science of the Total Environment, 2022, 816: 151613
    Henderson P J F, Maher C, Elbourne L D H, et al. Physiological functions of bacterial “multidrug” efflux pumps[J]. Chemical Reviews, 2021, 121(9): 5417-5478
    张刚, 冯婕. 细菌固有耐药的研究进展[J]. 遗传, 2016, 38(10): 872-880

    Zhang G, Feng J. The intrinsic resistance of bacteria[J]. Hereditas, 2016, 38(10): 872-880(in Chinese)

    Chen Q L, An X L, Li H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92-93: 1-10
    Raza S, Shin H, Hur H G, et al. Higher abundance of core antimicrobial resistant genes in effluent from wastewater treatment plants[J]. Water Research, 2022, 208: 117882
  • 加载中
计量
  • 文章访问数:  2711
  • HTML全文浏览数:  2711
  • PDF下载数:  216
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-27
苏志国, 陈伟东, 郑宇涵, 危婕, 李菲菲, 陈嘉瑜, 陈吕军, 温东辉. 基于宏基因组学解析不同污水处理系统的耐药基因组分布特征和传播机制[J]. 生态毒理学报, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001
引用本文: 苏志国, 陈伟东, 郑宇涵, 危婕, 李菲菲, 陈嘉瑜, 陈吕军, 温东辉. 基于宏基因组学解析不同污水处理系统的耐药基因组分布特征和传播机制[J]. 生态毒理学报, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001
Su Zhiguo, Chen Weidong, Zheng Yuhan, Wei Jie, Li Feifei, Chen Jiayu, Chen Lyujun, Wen Donghui. Distribution Characteristics and Transmission Mechanism of Antibiotic Resistome in Different Wastewater Treatment Systems Based on Metagenomic Analysis[J]. Asian journal of ecotoxicology, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001
Citation: Su Zhiguo, Chen Weidong, Zheng Yuhan, Wei Jie, Li Feifei, Chen Jiayu, Chen Lyujun, Wen Donghui. Distribution Characteristics and Transmission Mechanism of Antibiotic Resistome in Different Wastewater Treatment Systems Based on Metagenomic Analysis[J]. Asian journal of ecotoxicology, 2023, 18(2): 1-13. doi: 10.7524/AJE.1673-5897.20221227001

基于宏基因组学解析不同污水处理系统的耐药基因组分布特征和传播机制

    通讯作者: 温东辉, E-mail: dhwen@pku.edu.cn
    作者简介: 苏志国(1994—),男,博士,研究方向为环境微生物学,E-mail: suzhiguo94@163.com
  • 1. 清华大学环境学院, 北京 100084;
  • 2. 北京大学环境科学与工程学院, 北京 100871;
  • 3. 上海师范大学环境与地理科学学院, 上海 200234;
  • 4. 浙江清华长三角研究院生态环境研究所, 浙江省水质科学与技术重点实验室, 嘉兴 314050
基金项目:

国家自然科学基金面上项目(52170185,52070111);国家自然科学基金重点项目(51938001);中国博士后科学基金面上项目(2022M721815);清华大学“水木学者”计划

摘要: 污水处理厂是向水环境中传播抗生素抗性基因(antibiotic resistance genes, ARGs)的热点。与城镇污水相比,工业园区废水成分复杂、污染物浓度高,更有利于ARGs的增殖和扩散。为探究不同类型废水环境的ARGs组成特征和潜在的传播风险,采用宏基因组学技术分别对城镇生活污水处理系统(W1-SD)、工业园区废水处理系统(W1-SI)和2个城镇综合污水处理系统(W2-LH1和W2-LH2)进行取样调查。结果显示,多重耐药类、磺胺类、氨基糖苷类和杆菌肽类抗性基因是废水环境中的主要耐药类型,Ⅰ型整合子、转座酶基因等可移动遗传元件(MGEs)对sul1aadAereA等基因亚型的增殖扩散发挥了关键作用,通过序列分型发现质粒型ARGs的相对丰度更高,尤其是在进水样品中,氨基糖苷类和磺胺类等抗性基因是主要的质粒型ARGs;污水处理过程削减了ARGs多样性,且经过二次沉淀工艺,ARGs丰度均明显降低,但在W1-SI和W2-LH2中,后续的深度处理工艺又使ARGs丰度升高;与城镇污水处理系统相比,W1-SI的ARGs组成更为稳定,最终排水中富集了较高丰度的质粒型ARGs,同时识别到了高频率的潜在水平基因转移事件和2条携带多种抗性基因的重叠群序列(contigs),表明工业园区废水排放具有更高的ARGs传播风险。本研究丰富了不同类型废水环境耐药基因组的已有认知,为有效管控废水排放特别是工业园区废水排放的健康风险提供了科学依据。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回