液晶单体的环境效应与健康风险研究进展
Research Progress on Environmental Effects and Health Risks of Liquid Crystal Monomers
-
摘要: 液晶单体(LCMs)作为目前常用的薄膜晶体管液晶显示屏(thin film transform liquid crystal display, TFT-LCD)的关键组成部分。随着电子产品的老化和淘汰进入到环境中,目前在电子废弃物拆解场、填埋场和居民住所等环境中已被检测到。且LCMs作为一类潜在的具有持久性、生物累积性和毒性的新污染物,具有一定的环境效应和健康风险,有必要引起一定的关注。目前国内外对这一类物质的关注度却很低,仅有少数研究团队在进行其环境效应和健康风险方面的研究。本文简要综述了LCMs的分析方法、在环境中的分布和组成以及在大气中转化机理的研究进展,同时本文针对LCMs的环境行为参数和毒性,阐明了LCMs的健康风险评估方法和研究的不足之处,并对环境介质中LCMs的全面评估、环境中LCMs的溯源和迁移转化规律以及高检出率LCMs的毒理学研究提出了一些建议。Abstract: Liquid crystal monomers (LCMs) are significant chemicals commonly used in thin-film transform liquid crystal display (TFT-LCD). With the huge number of LCD devices produced, many such devices end up being discarded and at best end up in e-waste sites, which raises the worry of eventually being released and entering into the natural environment. Now they have been detected in diverse sites, such as e-waste dismantling sites, landfills, and residences. As a new class of potential emerging pollutants with persistence, bioaccumulation, and toxicity, LCMs have certain environmental impacts and health risks, which deserve more attention. This paper briefly reviews the research progress of analysis methods, composition and distribution in the environment, and transformation mechanism in the atmosphere of LCMs. At the same time, in view of the environmental behavioral parameters and toxicity of LCMs, this paper expounds the shortcomings of health risk assessment methods and relative research of LCMs. Some suggestions for the comprehensive assessment of LCMs in environmental media, traceability, migration and transformation of LCMs in the environment, and toxicological studies of LCMs with high detection rates are also proposed.
-
中国化工信息中心. 中国化学工业年鉴(2014)[M]. 北京: 中国化工信息中心, 2014: 266-269 庄绪宁, 李敏霞, 宋小龙, 等. 中国典型液晶显示设备中有毒有害物质存量及其污染流向分析[J]. 环境污染与防治, 2021, 43(4): 445-452 Zhuang X N, Li M X, Song X L, et al. Stocks of hazardous substance in typical liquid crystal display equipment in China and its pollution flow analysis [J]. Environmental Pollution & Control, 2021, 43(4): 445-452 (in Chinese)
Li J H, Gao S, Duan H B, et al. Recovery of valuable materials from waste liquid crystal display panel [J]. Waste Management, 2009, 29(7): 2033-2039 Zhang L G, Wu B, Chen Y, et al. Treatment of liquid crystals and recycling indium for stripping product gained by mechanical stripping process from waste liquid crystal display panels [J]. Journal of Cleaner Production, 2017, 162: 1472-1481 周上群. 苯并呋喃及苯并吡喃类液晶中间体的合成与应用研究[D]. 青岛: 青岛科技大学, 2020: 1-14 Zhou S Q. Synthesis and application of benzofuran and benzopyran liquid crystal intermediates [D]. Qingdao: Qingdao University of Science & Technology, 2020: 1 -14 (in Chinese)
Li J H, Su G Y, Letcher R J, et al. Liquid crystal monomers (LCMs): A new generation of persistent bioaccumulative and toxic (PBT) compounds? [J]. Environmental Science & Technology, 2018, 52(9): 5005-5006 赵怿哲. 基于液晶材料的电磁超材料机理及功能性器件研究[D]. 成都: 电子科技大学, 2019: 22-23 Zhao Y Z. Research on mechanism of electromagnetic metamaterials and functional devices based on liquid crystals [D]. Chengdu: University of Electronic Science and Technology of China, 2019: 22 -23 (in Chinese)
徐晓鹏, 底楠. 液晶材料的分类、发展和国内应用情况[J]. 化工新型材料, 2006, 34(11): 81-83 Su H J, Ren K F, Li R R, et al. Suspect screening of liquid crystal monomers (LCMs) in sediment using an established database covering 1173 LCMs [J]. Environmental Science & Technology, 2022, 56(12): 8061-8070 王宏, 杨霓云, 闫振广, 等. 我国持久性、生物累积性和毒性(PBT)化学物质评价研究[J]. 环境工程技术学报, 2011, 1(5): 414-419 Wang H, Yang N Y, Yan Z G, et al. Study on assessment of persistent, bioaccumulation and toxic chemicals in China [J]. Journal of Environmental Engineering Technology, 2011, 1(5): 414-419 (in Chinese)
黄昱. 羟基自由基引发典型液晶单体的大气转化机制、动力学及毒性研究[D]. 长春: 东北师范大学, 2021: 1-24 Huang Y. ·OH-initiated atmospheric transformation mechanism, kinetics and toxicity of typical liquid crystal monomers [D]. Changchun: Northeast Normal University, 2021 : 1-24 (in Chinese)
Artabe A E, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review [J]. Food and Chemical Toxicology, 2020, 145: 111677 王斌, 余刚, 黄俊, 等. QSAR/QSPR在POPs归趋与风险评价中的应用[J]. 化学进展, 2007, 19(10): 1612-1619 Wang B, Yu G, Huang J, et al. Application of QSAR/QSPR in fate evaluation and risk assessment of POPs [J]. Progress in Chemistry, 2007, 19(10): 1612-1619 (in Chinese)
Mumtaz M M, Ray M, Crowell S R, et al. Translational research to develop a human PBPK models tool kit-volatile organic compounds (VOCs) [J]. Journal of Toxicology and Environmental Health Part A, 2012, 75(1): 6-24 Zhu M, Su H J, Bao Y R, et al. Experimental determination of octanol-water partition coefficient (KOW) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method [J]. Chemosphere, 2022, 287(Pt 4): 132407 Feng J J, Sun X F, Zeng E Y. Measurement of octanol-air partition coefficients for liquid crystals based on gas chromatography-retention time and its implication in predicting long-range transport potential [J]. Chemosphere, 2021, 282: 131109 Su H J, Shi S B, Zhu M, et al. Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26450-26458 Su H J, Shi S B, Zhu M, et al. Liquid crystal monomers (LCMs) in sediments: Method validation and detection in sediment samples from three typical areas [J]. Environmental Science & Technology, 2021, 55(4): 2336-2345 Jin Q Q, Tao D Y, Lu Y C, et al. New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate [J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127146 Tao D Y, Jin Q Q, Ruan Y F, et al. Widespread occurrence of emerging E-waste contaminants—Liquid crystal monomers in sediments of the Pearl River Estuary, China [J]. Journal of Hazardous Materials, 2022, 437: 129377 Cheng Z P, Shi Q Y, Wang Y, et al. Electronic-waste-driven pollution of liquid crystal monomers: Environmental occurrence and human exposure in recycling industrial parks [J]. Environmental Science & Technology, 2022, 56(4): 2248-2257 Yao B, Luo Z R, Zhi D, et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review [J]. Journal of Hazardous Materials, 2021, 403: 123674 Lu D S, Jin Y E, Feng C, et al. Multi-analyte method development for analysis of brominated flame retardants (BFRs) and PBDE metabolites in human serum [J]. Analytical and Bioanalytical Chemistry, 2017, 409(22): 5307-5317 Zhu M S, Shen M J, Liang X X, et al. Identification of environmental liquid-crystal monomers: A class of new persistent organic pollutants-fluorinated biphenyls and analogues-emitted from E-waste dismantling [J]. Environmental Science & Technology, 2021, 55(9): 5984-5992 Shen M J, Feng Z Q, Liang X X, et al. Release and gas-particle partitioning behavior of liquid crystal monomers during the dismantling of waste liquid crystal display panels in E-waste recycling facilities [J]. Environmental Science & Technology, 2022, 56(5): 3106-3116 Liu Q F, Abbatt J P D. Liquid crystal display screens as a source for indoor volatile organic compounds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(23): e2105067118 Liang X X, Xie R M, Zhu C Y, et al. Comprehensive identification of liquid crystal monomers-biphenyls, cyanobiphenyls, fluorinated biphenyls, and their analogues-in waste LCD panels and the first estimate of their global release into the environment [J]. Environmental Science & Technology, 2021, 55(18): 12424-12436 Liu Q F, Liggio J, Wentzell J, et al. Atmospheric OH oxidation chemistry of particulate liquid crystal monomers: An emerging persistent organic pollutant in air [J]. Environmental Science and Technology Letters, 2020, 7: 646-652 Li C, Huang Y, Zhang X, et al. Atmospheric fate and risk investigation of typical liquid crystal monomers [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(9): 3600-3607 Huang Y, Zhang X, Li C, et al. Atmospheric persistence and toxicity evolution for fluorinated biphenylethyne liquid crystal monomers unveiled by in silico methods [J]. Journal of Hazardous Materials, 2022, 424(Pt B): 127519 He S X, Shen M J, Wu E Y, et al. Molecular structure on the detoxification of fluorinated liquid crystal monomers with reactive oxidation species in the photocatalytic process [J]. Environmental Science and Ecotechnology, 2022, 9: 100141 Woolverton C J, Gustely E, Li L F, et al. Liquid crystal effects on bacterial viability [J]. Liquid Crystals, 2005, 32(4): 417-423 An R, Li Y D, Niu X J, et al. Responses of antioxidant enzymes in catfish exposed to liquid crystals from E-waste [J]. International Journal of Environmental Research and Public Health, 2008, 5(2): 99-103 Feng J J, Sun X F, Zeng E Y. Emissions of liquid crystal monomers from obsolete smartphone screens in indoor settings: Characteristics and human exposure risk [J]. Environmental Science & Technology, 2022, 56(12): 8053-8060 Allen J G, McClean M D, Stapleton H M, et al. Critical factors in assessing exposure to PBDEs via house dust [J]. Environment International, 2008, 34(8): 1085-1091 Zhang S H, Yang M, Li Y H, et al. Occurrence, distribution, and human exposure of emerging liquid crystal monomers (LCMs) in indoor and outdoor dust: A nationwide study [J]. Environment International, 2022, 164: 107295
计量
- 文章访问数: 3247
- HTML全文浏览数: 3247
- PDF下载数: 134
- 施引文献: 0