农药类化合物对鱼类脂质代谢的影响及机制研究进展

赵文慧, 张晓娜, 汝少国. 农药类化合物对鱼类脂质代谢的影响及机制研究进展[J]. 生态毒理学报, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001
引用本文: 赵文慧, 张晓娜, 汝少国. 农药类化合物对鱼类脂质代谢的影响及机制研究进展[J]. 生态毒理学报, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001
Zhao Wenhui, Zhang Xiaona, Ru Shaoguo. Advance on Effect and Mechanism of Pesticide Chemicals on Lipid Metabolism in Fish[J]. Asian journal of ecotoxicology, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001
Citation: Zhao Wenhui, Zhang Xiaona, Ru Shaoguo. Advance on Effect and Mechanism of Pesticide Chemicals on Lipid Metabolism in Fish[J]. Asian journal of ecotoxicology, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001

农药类化合物对鱼类脂质代谢的影响及机制研究进展

    作者简介: 赵文慧(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:2746164540@qq.com
    通讯作者: 张晓娜, E-mail: zxn_xiaona@ouc.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(31971235)

  • 中图分类号: X171.5

Advance on Effect and Mechanism of Pesticide Chemicals on Lipid Metabolism in Fish

    Corresponding author: Zhang Xiaona, zxn_xiaona@ouc.edu.cn
  • Fund Project:
  • 摘要: 由于农药的广泛使用,目前许多农药类化学物质在水生生态系统中被检出,造成水环境污染,影响水生非靶生物的健康。脂质在鱼类生长发育中发挥着重要作用,近年来大量研究表明农药暴露能够干扰鱼类脂质代谢,导致脂质水平紊乱。本文在介绍农药污染现状基础上,从干扰脂质消化吸收、合成、分解和转运等过程综述了农药类化合物对鱼类脂质代谢的干扰效应及机制。以期为今后进一步探究农药的脂代谢毒性作用及其安全性评价提供更多的理论参考。
  • 加载中
  • Damalas C A, Eleftherohorinos I G. Pesticide exposure, safety issues, and risk assessment indicators [J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419
    Kopp R, Martínez I O, Legradi J, et al. Exposure to endocrine disrupting chemicals perturbs lipid metabolism and circadian rhythms [J]. Journal of Environmental Sciences (China), 2017, 62: 133-137
    Fraher D, Sanigorski A, Mellett N A, et al. Zebrafish embryonic lipidomic analysis reveals that the yolk cell is metabolically active in processing lipid [J]. Cell Reports, 2016, 14(6): 1317-1329
    Mnif W, Hassine A I H, Bouaziz A, et al. Effect of endocrine disruptor pesticides: A review [J]. International Journal of Environmental Research and Public Health, 2011, 8(6): 2265-2303
    Hernández A F, Gil F, Lacasaña M, et al. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage [J]. Food and Chemical Toxicology, 2013, 61: 144-151
    Cao F M, Li Z Z, He Q, et al. Occurrence, spatial distribution, source, and ecological risk assessment of organochlorine pesticides in Dongting Lake, China [J]. Environmental Science and Pollution Research, 2021, 28(24): 30841-30857
    Sumon K A, Rashid H, Peeters E T H M, et al. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh [J]. Chemosphere, 2018, 206: 92-100
    Huang F Y, Li Z Y, Zhang C, et al. Pesticides in the typical agricultural groundwater in Songnen plain, northeast China: Occurrence, spatial distribution and health risks [J]. Environmental Geochemistry and Health, 2019, 41(6): 2681-2695
    Jurado A, Vàzquez-Suñé E, Carrera J, et al. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context [J]. Science of the Total Environment, 2012, 440: 82-94
    Huang Y M, Zhang R J, Li K C, et al. Experimental study on the role of sedimentation and degradation processes on atmospheric deposition of persistent organic pollutants in a subtropical water column [J]. Environmental Science & Technology, 2017, 51(8): 4424-4433
    Chen Z F, Wen H B, Dai X X, et al. Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China [J]. Journal of Hazardous Materials, 2018, 357: 376-383
    Li H Z, Tyler Mehler W, Lydy M J, et al. Occurrence and distribution of sediment-associated insecticides in urban waterways in the Pearl River Delta, China [J]. Chemosphere, 2011, 82(10): 1373-1379
    Yang L Q, Li H M, Zhang Y Y, et al. Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations [J]. Environment International, 2019, 133: 105175
    Deribe E, Rosseland B O, Borgstrøm R, et al. Bioaccumulation of persistent organic pollutants (POPs) in fish species from Lake Koka, Ethiopia: The influence of lipid content and trophic position [J]. The Science of the Total Environment, 2011, 410-411: 136-145
    Supe Tulcan R X, Ouyang W, Gu X, et al. Typical herbicide residues, trophic transfer, bioconcentration, and health risk of marine organisms [J]. Environment International, 2021, 152: 106500
    Das Sarkar S, Nag S K, Kumari K, et al. Occurrence and safety evaluation of antimicrobial compounds triclosan and triclocarban in water and fishes of the multitrophic niche of River Torsa, India [J]. Archives of Environmental Contamination and Toxicology, 2020, 79(4): 488-499
    Riaz G, Tabinda A B, Kashif M, et al. Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the River Chenab Pakistan [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22584-22597
    Benaabidate L, Fryar A E. Controls on ground water chemistry in the central Couloir Sud Rifain, Morocco [J]. Ground Water, 2010, 48(2): 306-319
    Xu M J, Huang H T, Li N, et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China [J]. Ecotoxicology and Environmental Safety, 2019, 175: 289-298
    Anjum R, Malik A. Evaluation of mutagenicity of wastewater in the vicinity of pesticide industry [J]. Environmental Toxicology and Pharmacology, 2013, 35(2): 284-291
    Jabeen F, Chaudhry A S, Manzoor S, et al. Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks [J]. Environmental Monitoring and Assessment, 2015, 187(2): 29
    Feo M L, Eljarrat E, Barceló D. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples [J]. Journal of Chromatography A, 2010, 1217(15): 2248-2253
    Bennett E R, Moore M T, Cooper C M, et al. Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff [J]. Environmental Toxicology and Chemistry, 2005, 24(9): 2121-2127
    Riaz G, Tabinda A B, Kashif M, et al. Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the River Chenab Pakistan [J]. Environmental Science and Pollution Research International, 2018, 25(23): 22584-22597
    Nag S K, Saha K, Bandopadhyay S, et al. Status of pesticide residues in water, sediment, and fishes of Chilika Lake, India [J]. Environmental Monitoring and Assessment, 2020, 192(2): 122
    Gonçalves C, Marins A T, do Amaral A M B, et al. Ecological impacts of pesticides on Astyanax jacuhiensis (Characiformes: Characidae) from the Uruguay River, Brazil [J]. Ecotoxicology and Environmental Safety, 2020, 205: 111314
    Metcalfe C D, Helm P, Paterson G, et al. Pesticides related to land use in watersheds of the Great Lakes Basin [J]. The Science of the Total Environment, 2019, 648: 681-692
    Skeff W, Neumann C, Schulz-Bull D E. Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study [J]. Marine Pollution Bulletin, 2015, 100(1): 577-585
    Pérez D J, Iturburu F G, Calderon G, et al. Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina [J]. Chemosphere, 2021, 263: 128061
    Barik S R, Ganguly P, Patra S, et al. Persistence behavior of metamifop and its metabolite in rice ecosystem [J]. Chemosphere, 2018, 193: 875-882
    Amondham W, Parkpian P, Polprasert C, et al. Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand [J]. Journal of Environmental Science and Health, Part B, 2006, 41(5): 485-507
    Li H H, Feng Y J, Li X S, et al. Analytical confirmation of various herbicides in drinking water resources in sugarcane production regions of Guangxi, China [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(6): 815-820
    Chidya R, Derbalah A, Abdel-Dayem S, et al. Contamination, dynamics, and health risk assessment of pesticides in seawater and marine samples from the Seto Inland Sea, Japan [J]. Environmental Science and Pollution Research International, 2022, 29(45): 67894-67907
    Xie H J, Wang X P, Chen J W, et al. Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China [J]. Science of the Total Environment, 2019, 656: 946-951
    Zheng S, Chen B, Qiu X Y, et al. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China [J]. Chemosphere, 2016, 144: 1177-1192
    Oliveira I B, Beiras R, Thomas K V, et al. Acute toxicity of tralopyril, capsaicin and triphenylborane pyridine to marine invertebrates [J]. Ecotoxicology, 2014, 23(7): 1336-1344
    Castillo L E, Martínez E, Ruepert C, et al. Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica [J]. The Science of the Total Environment, 2006, 367(1): 418-432
    Jurado A, Vàzquez-Suñé E, Carrera J, et al. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context [J]. The Science of the Total Environment, 2012, 440: 82-94
    Zheng S, Chen B, Qiu X Y, et al. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China [J]. Chemosphere, 2016, 144: 1177-1192
    Añasco N, Uno S, Koyama J, et al. Assessment of pesticide residues in freshwater areas affected by rice paddy effluents in Southern Japan [J]. Environmental Monitoring and Assessment, 2010, 160(1-4): 371-383
    Smalling K L, Kuivila K M, Orlando J L, et al. Environmental fate of fungicides and other current-use pesticides in a central California Estuary [J]. Marine Pollution Bulletin, 2013, 73(1): 144-153
    Babić S, Barišić J, Stipaničev D, et al. Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization [J]. Science of the Total Environment, 2018, 643: 435-450
    Huang D G, Zhen J, Quan S Q, et al. Risk assessment for niclosamide residues in water and sediments from Nan Ji Shan Island within Poyang Lake Region, China [J]. Advanced Materials Research, 2013, 721: 608-612
    López-Ruiz R, Romero-González R, Garrido Frenich A. Dissipation kinetics of fenamidone, propamocarb and their metabolites in ambient soil and water samples and unknown screening of metabolites [J]. Journal of Environmental Management, 2020, 254: 109818
    Masiá, Campo J, Navarro-Ortega A, et al. Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data [J]. The Science of the Total Environment, 2015, 503-504: 58-68
    Mansbach C M 2nd, Gorelick F. Development and physiological regulation of intestinal lipid absorption. Ⅱ. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons [J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2007, 293(4): G645-G650
    Adeyemi J A, Olise C C, Bamidele O S, et al. Effects of ultraviolet photooxidation of cypermethrin on the activities of phosphatases and digestive enzymes, and intestinal histopathology in African catfish, Clarias gariepinus (Burchell, 1822) [J]. Journal of Experimental Zoology Part A, Ecological and Integrative Physiology, 2020, 333(8): 543-549
    Zhao F, Guo M Y, Zhang M N, et al. Sub-lethal concentration of metamifop exposure impair gut health of zebrafish (Danio rerio) [J]. Chemosphere, 2022, 303: 135081
    Li Z H, Li P, Shi Z C. Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin [J]. Ecotoxicology and Environmental Safety, 2014, 109: 10-14
    Sheng Y, Ren H, Limbu S M, et al. The presence or absence of intestinal microbiota affects lipid deposition and related genes expression in zebrafish (Danio rerio) [J]. Frontiers in Microbiology, 2018, 9: 1124
    Semova I, Carten J D, Stombaugh J, et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish [J]. Cell Host & Microbe, 2012, 12(3): 277-288
    Jiang J H, Chen L Z, Wu S G, et al. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio) [J]. Environmental Pollution, 2020, 265: 114844
    Zhang R, Pan Z H, Wang X Y, et al. Short-term propamocarb exposure induces hepatic metabolism disorder associated with gut microbiota dysbiosis in adult male zebrafish [J]. Acta Biochimica et Biophysica Sinica, 2019, 51(1): 88-96
    He S W, Yu D D, Li P, et al. Triphenyltin exposure causes changes in health-associated gut microbiome and metabolites in marine medaka [J]. Environmental Pollution, 2021, 288: 117751
    马慧敏, 刘昌奇. 脂肪酸合成酶(FAS)基因的研究进展以及日粮成分对其表达的调控[J]. 饲料工业, 2007, 28(22): 59-64
    Tong L. Acetyl-coenzyme A carboxylase: Crucial metabolic enzyme and attractive target for drug discovery [J]. Cellular and Molecular Life Sciences, 2005, 62(16): 1784-1803
    Zhao F, Zhang M N, Guo M Y, et al. Effects of sublethal concentration of metamifop on hepatic lipid metabolism in adult zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2021, 238: 105938
    Fuller N, Magnuson J T, Huff Hartz K E, et al. Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha [J]. Ecotoxicology, 2021, 30(2): 257-267
    Xu Y H, Tan X Y, Xu Y C, et al. Novel insights for SREBP-1 as a key transcription factor in regulating lipogenesis in a freshwater teleost, grass carp Ctenopharyngodon idella [J]. The British Journal of Nutrition, 2019, 122(11): 1201-1211
    Qian L, Qi S Z, Cao F J, et al. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages [J]. Chemosphere, 2019, 214: 184-194
    Yu Y H, Wu S C, Cheng W T, et al. The function of porcine PPARγ and dietary fish oil effect on the expression of lipid and glucose metabolism related genes [J]. The Journal of Nutritional Biochemistry, 2011, 22(2): 179-186
    Dong X C, Li Y, Zhang L M, et al. Influence of difenoconazole on lipid metabolism in marine medaka (Oryzias melastigma) [J]. Ecotoxicology, 2016, 25(5): 982-990
    王杨, 吴国辉, 钱秋慧, 等. 三氯生对斑马鱼发育和脂质代谢的影响[J]. 中国环境科学, 2022, 42(3): 1394-1400

    Wang Y, Wu G H, Qian Q H, et al. Effects of triclosan environmental exposure on zebrafish development and lipid metabolism [J]. China Environmental Science, 2022, 42(3): 1394-1400 (in Chinese)

    Guo W, Han J, Wu S, et al. Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate affects lipid metabolism in zebrafish larvae via DNA methylation modification [J]. Environmental Science &Technology, 2020, 54(1): 355-363
    Liu J B, Dong C Y, Zhai Z Z, et al. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp [J]. Environmental Pollution, 2021, 269: 116186
    Xu W N, Liu W B, Shao X P, et al. Effect of trichlorfon on hepatic lipid accumulation in crucian carp Carassius auratus gibelio [J]. Journal of Aquatic Animal Health, 2012, 24(3): 185-194
    Yang Y, Dong F S, Liu X G, et al. Thifluzamide affects lipid metabolism in zebrafish (Danio reio) [J]. The Science of the Total Environment, 2018, 633: 1227-1236
    Gervois P, Torra I P, Fruchart J C, et al. Regulation of lipid and lipoprotein metabolism by PPAR activators [J]. Clinical Chemistry and Laboratory Medicine, 2000, 38(1): 3-11
    Du Z Y, Clouet P, Degrace P, et al. Hypolipidaemic effects of fenofibrate and fasting in the herbivorous grass carp (Ctenopharyngodon idella) fed a high-fat diet [J]. The British Journal of Nutrition, 2008, 100(6): 1200-1212
    Qian L, Zhang J, Chen X G, et al. Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism [J]. Environmental Pollution, 2019, 247: 775-782
    Wang H, Eckel R. Regulation of lipid and lipoprotein metabolism by PPAR activators [J]. Cytogenetics & Cell Genetics, 2009, 297(2): 271
    Zhang J, Qian L, Teng M M, et al. The lipid metabolism alteration of three spirocyclic tetramic acids on zebrafish (Danio rerio) embryos [J]. Environmental Pollution, 2019, 248: 715-725
    Chen Z, Tian R F, She Z G, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease [J]. Free Radical Biology and Medicine, 2020, 152: 116-141
    Hardie D G. AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function [J]. Genes & Development, 2011, 25(18): 1895-1908
    Zhu B R, He W, Yang F, et al. High-throughput transcriptome sequencing reveals the developmental toxicity mechanisms of niclosamide in zebrafish embryo [J]. Chemosphere, 2020, 244: 125468
    Jia K, Cheng B, Huang L R, et al. Thiophanate-methyl induces severe hepatotoxicity in zebrafish [J]. Chemosphere, 2020, 248: 125941
    Zhong H Y, Dong L J, Dong Q J, et al. Quantitative analysis of aberrant fatty acid composition of zebrafish hepatic lipids induced by organochlorine pesticide using stable isotope-coded transmethylation and gas chromatography-mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2012, 404(1): 207-216
    Maisano M, Cappello T, Oliva S, et al. PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the Mediterranean Sea [J]. Marine Environmental Research, 2016, 121: 40-48
    Bui-Nguyen T M, Baer C E, Lewis J A, et al. Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish, Danio rerio [J]. BMC Genomics, 2015, 16: 853
    Liu J B, Dong C Y, Zhai Z Z, et al. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp [J]. Environmental Pollution, 2021, 269: 116186
    Sun L B, Li J S, Zuo Z H, et al. Chronic exposure to paclobutrazol causes hepatic steatosis in male rockfish Sebastiscus marmoratus and the mechanism involved [J]. Aquatic Toxicology, 2013, 126: 148-153
    Weng Y, Huang Z Z, Wu A Y, et al. Embryonic toxicity of epoxiconazole exposure to the early life stage of zebrafish [J]. The Science of the Total Environment, 2021, 778: 146407
    Tian S N, Teng M M, Meng Z Y, et al. Toxicity effects in zebrafish embryos (Danio rerio) induced by prothioconazole [J]. Environmental Pollution, 2019, 255(Pt 2): 113269
    Teng M M, Zhao F, Zhou Y M, et al. Effect of propiconazole on the lipid metabolism of zebrafish embryos (Danio rerio) [J]. Journal of Agricultural and Food Chemistry, 2019, 67(16): 4623-4631
    Olsvik P A, Hammer S K, Sanden M, et al. Chlorpyrifos-induced dysfunction of lipid metabolism is not restored by supplementation of polyunsaturated fatty acids EPA and ARA in Atlantic salmon liver cells [J]. Toxicology in Vitro, 2019, 61: 104655
    Wang X Y, Shen M L, Zhou J J, et al. Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019, 216: 19-28
    Bao Z W, Zhao Y, Wu A Y, et al. Sub-chronic carbendazim exposure induces hepatic glycolipid metabolism disorder accompanied by gut microbiota dysbiosis in adult zebrafish (Daino rerio) [J]. The Science of the Total Environment, 2020, 739: 140081
    曾端, 叶元土. 鱼类食性与消化系统结构的研究[J]. 西南农业大学学报, 1998, 20(4): 361-364

    Zeng D, Ye Y T. Studies on digestive system and different feeding habits of some fishes in freshwater [J]. Journal of Southwest Agricultural University, 1998, 20(4): 361-364 (in Chinese)

    Tocher D R. Glycerophospholipid metabolism [J]. Biochemistry and Molecular Biology of Fishes, 1995, 4: 119-157
    Sarma K, Pal A K, Grinson-George, et al. Effect of sub-lethal concentration of endosulfan on lipid and fatty acid metabolism of spotted murrel, Channa punctatus [J]. Journal of Environmental Biology, 2015, 36(2): 451-454
    Lal B, Singh T P. Impact of pesticides on lipid metabolism in the freshwater catfish, Clarias batrachus, during the vitellogenic phase of its annual reproductive cycle [J]. Ecotoxicology and Environmental Safety, 1987, 13(1): 13-23
    Sui L Y, Wu X G, Wille M, et al. Effect of dietary soybean lecithin on reproductive performance of Chinese mitten crab Eriocheir sinensis [J]. Aquaculture International, 2009, 17(1): 45-56
    Sun L M, Ling Y H, Jiang J H, et al. Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq [J]. Chemosphere, 2020, 251: 126318
  • 加载中
计量
  • 文章访问数:  1952
  • HTML全文浏览数:  1952
  • PDF下载数:  82
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-05
赵文慧, 张晓娜, 汝少国. 农药类化合物对鱼类脂质代谢的影响及机制研究进展[J]. 生态毒理学报, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001
引用本文: 赵文慧, 张晓娜, 汝少国. 农药类化合物对鱼类脂质代谢的影响及机制研究进展[J]. 生态毒理学报, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001
Zhao Wenhui, Zhang Xiaona, Ru Shaoguo. Advance on Effect and Mechanism of Pesticide Chemicals on Lipid Metabolism in Fish[J]. Asian journal of ecotoxicology, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001
Citation: Zhao Wenhui, Zhang Xiaona, Ru Shaoguo. Advance on Effect and Mechanism of Pesticide Chemicals on Lipid Metabolism in Fish[J]. Asian journal of ecotoxicology, 2023, 18(1): 16-28. doi: 10.7524/AJE.1673-5897.20220905001

农药类化合物对鱼类脂质代谢的影响及机制研究进展

    通讯作者: 张晓娜, E-mail: zxn_xiaona@ouc.edu.cn
    作者简介: 赵文慧(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:2746164540@qq.com
  • 中国海洋大学海洋生命学院, 青岛 266003
基金项目:

国家自然科学基金资助项目(31971235)

摘要: 由于农药的广泛使用,目前许多农药类化学物质在水生生态系统中被检出,造成水环境污染,影响水生非靶生物的健康。脂质在鱼类生长发育中发挥着重要作用,近年来大量研究表明农药暴露能够干扰鱼类脂质代谢,导致脂质水平紊乱。本文在介绍农药污染现状基础上,从干扰脂质消化吸收、合成、分解和转运等过程综述了农药类化合物对鱼类脂质代谢的干扰效应及机制。以期为今后进一步探究农药的脂代谢毒性作用及其安全性评价提供更多的理论参考。

English Abstract

参考文献 (93)

返回顶部

目录

/

返回文章
返回