-
一般认为COD低于200 mg·L−1,COD/TN低于3.5—4.5或BOD5/TN小于3—5的污水属于低碳氮比污水[1]。据统计,我国污水处理厂进水中BOD5/TN小于4的占比约70%,污水碳氮比总体均偏低,南方地区尤其严重[2]。目前污水脱氮主要利用微生物反硝化技术,但对于低碳氮比污水,即使采用前置反硝化工艺如A/O、A2O等,仍不能满足总氮(TN)脱除一级A标准,这通常是由于二级出水中硝酸盐氮含量过高,需要再进行深度脱氮处理。为实现低碳氮比污水的达标排放,目前主要通过在缺氧反硝化阶段外加有机碳源,但这增加了污水处理成本与二次污染风险。为此,不依赖有机碳源的硫自养反硝化技术广受关注,成为解决低碳氮比污水无法达标脱氮问题的首选。
硫自养反硝化技术是利用H2S、S、
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-} $ 、$ \mathrm{S}_{4} \mathrm{O}_{6}^{2-}$ 、$\mathrm{S} \mathrm{O}_{3}^{2-} $ 等为电子供体,CO2、$\mathrm{HCO}_{3}^{-} $ 、$\mathrm{CO}_{3}^{2-} $ 作为碳源[3],将硝酸盐还原为氮气的技术,具有无需外加有机碳源和污泥产量少两个重要优势[4]。对于低碳氮比污水深度脱氮效果显著,且经济性较高,常见于固定填充床反硝化滤池[5]。以单质硫为电子供体时,随着反应进行[6](式1),持续产生的酸会抑制微生物活性,必须添加碱缓冲材料来维持pH稳定在适宜范围内。
碱度材料有碳酸钙、碳酸氢钠以及碳酸亚铁等[3,7],但在实际大规模工程应用中,常常由于硫磺电子供体材料与碱缓冲材料密度不同,两者相互分离,导致微生物与这些填料在反应器内较难实现均匀传质,进而使得反硝化效果与酸碱度缓冲性能均降低。为解决上述问题,在我们之前的研究中开发了能同时充当电子供体与碱缓冲材料的碳-硫复合材料[6],并证实了其高效处理低碳氮比硝酸盐废水的可行性。但目前缺乏针对复合材料深度脱氮技术的工程应用参数如投加量、粒径、进水硝酸盐氮负荷等对脱氮效果影响的研究,难以精准指导实际工程应用。此外,由于微生物代谢反应的本质为酶促反应,因此体系动力学参数如传质系数、最大反硝化速率和Michaelis-Menten常数等对于深入理解微生物代谢过程介导的污染物去除机理至关重要[8],然而目前尚未对反应的动力学行为进行研究。
基于上述问题,本研究采用模拟低碳氮比硝酸盐污水为实验进水,构建了复合硫自养反硝化体系,探究硫-碳酸钙型复合材料的工程应用参数如投加量、粒径对体系反硝化性能的影响,以及体系抵抗进水硝酸盐氮浓度冲击的能力,同时考察反硝化过程中硝酸盐变化的动力学行为。
复合自养反硝化材料处理低碳氮比硝酸盐污水
Research on the treatment of low C/N ratio nitrate sewage by composite autotrophic denitrification material
-
摘要: 作为一种典型的硝酸盐污水,低碳氮比硝酸盐污水的存在具有广泛性,且对生态环境和居民健康带来的危害日益突出。本研究构建了复合硫自养反硝化(CSAD)体系,基于硫-碳酸钙型复合材料与微生物,进行低碳氮比硝酸盐污水的深度处理,分析了材料投加量、粒径以及进水硝酸盐浓度对CSAD的影响,并探究了硝酸盐去除的动力学行为。结果表明,体系中NO3--N去除率为52.7%—99.9%,NO2--N在NO3--N浓度降低至5 mg·L−1左右时由积累转变为迅速下降;复合材料投加量较低(1 g·L−1)时,自养阶段体系内电子供体数量不能满足微生物反硝化需求;增大投加量可提高NO3--N去除速率并降低反应过程中NO2--N积累量。当粒径大于2.5 mm时,复合材料利用效率显著降低。Michaelis−Menten方程拟合表明,投加量增大提高了酶与底物亲和力,促进Vmax增大,粒径减小增大了亲和力,但Vmax却减小。进水NO3--N浓度增大至50 mg·L−1时,亲和力显著降低,但Vmax增大可能与微生物数量增多有关。本研究从动力学角度上揭示了不同工艺参数对复合材料反硝化过程的影响,同时也为基于复合自养反硝化材料的低碳氮比污水深度处理的实际工程应用提供参考。Abstract: As a typical nitrate sewage, the existence of low C/N nitrate sewage is widespread and the harm to ecological environment and residents' health is becoming increasingly prominent. In this study, we constructed a composite sulfur autotrophic denitrification (CSAD) system based on sulfur-calcium carbonate composite material and microorganism for the advanced treatment of nitrate sewage with low C/N. The effects of material dosage, particle size and influent nitrate concentration on CSAD were analyzed, and the kinetic behavior of nitrate removal was explored. The results showed that the NO3--N removal rate of CSAD was between 52.7% and 99.9%, and NO2--N changed from accumulation to rapid decrease when NO3--N concentration decreased to around 5 mg·L−1. When the dosage of composite material was low (1 g·L−1), the number of electron donors in the autotrophic system can not meet the demand of microbial denitrification. Increasing the dosage of composite materials can increase the NO3--N removal rate and reduce the NO2--N accumulation in the process. The utilization efficiency of the composite materials decreased significantly when the particle size was larger than 2.5 mm. The fitting of the Michaelis-Menten equation showed that the increase in dosage increased the affinity of the enzyme and the substrate, thus it promoted the increase of Vmax. The decrease of particle size enhanced the affinity, but the Vmax decreased. When the influent NO3--N concentration increased to 50 mg·L−1, the affinity decreased significantly. However, the increase of Vmax may be related to the increase in the number of microorganisms. This study revealed the influence of different composite materials parameters on the denitrification process from the perspective of dynamics, and also provided a reference for the practical engineering application of advanced treatment of low C/N sewage based on composite autotrophic denitrification materials.
-
表 1 不同投加量米氏方程参数
Table 1. Parameters of Michaelis‐Menten equation with different dosage
投加量/(g·L−1)
DosageKm/
(mg·L−1)Vmax/
(mg·L−1·d−1)初始硝酸盐浓度
C0/(mg·L−1)R2 1 40.2 4.6 30 0.37 5 9.1 6.8 30 0.96 10 6.7 8.2 30 0.89 表 2 不同粒径下反硝化动力学拟合常数
Table 2. Fitting constants of denitrification kinetics under different particle sizes
粒径 /mm
Particle sizeK1/d−1 R2 C0/(mg·L−1) 2.50—4.75 0.05 0.74 26.8 1.00—2.50 0.28 0.97 30.0 0.45—1.00 0.16 0.96 31.0 0.125—0.45 0.35 0.97 33.5 表 3 不同粒径米氏方程参数
Table 3. Parameters of Michaelis‐Menten equation with different particle sizes
粒径 /mm
Particle sizeKm/(mg·L−1) Vmax/ [mg·L−1·d−1)] C0/(mg·L−1) R2 2.50—4.75 — — — — 1.00—2.50 9.1 6.8 30 0.96 0.45—1.00 4.9 3.4 30 0.93 0.125—0.45 1.1 1.4 30 0.50 表 4 不同进水硝酸盐浓度米氏方程参数
Table 4. Parameters of Michaelis‐Menten equation of different influent nitrate concentration
C0 /(mg·L−1) Km/(mg·L−1) Vmax/[mg·L−1·d−1)] R2 15 8.8 7.4 0.74 30 9.8 6.8 0.96 50 21.5 9.5 0.95 -
[1] 侯红娟, 王洪洋, 周琪. 进水COD浓度及C/N值对脱氮效果的影响 [J]. 中国给水排水, 2005(12): 19-23. doi: 10.3321/j.issn:1000-4602.2005.12.005 HOU H J, WANG H Y, ZHOU Q. Effect of influent COD concentration and C/N ratio on denitrification [J]. China Water & Wastewater, 2005(12): 19-23(in Chinese). doi: 10.3321/j.issn:1000-4602.2005.12.005
[2] 韦启信, 郑兴灿. 影响污水生物脱氮能力的关键水质参数及空间分布特征研究 [J]. 给水排水, 2013, 39(9): 127-131. doi: 10.3969/j.issn.1002-8471.2013.09.030 WEI Q X, ZHENG X C. Study on the key wastewater quality parameters influencing wastewater biological denitrification ability and their spatial distribution characteristics [J]. Water & Wastewater Engineering, 2013, 39(9): 127-131(in Chinese). doi: 10.3969/j.issn.1002-8471.2013.09.030
[3] TIAN T, YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters [J]. Bioresource Technology, 2020, 299: 122686. doi: 10.1016/j.biortech.2019.122686 [4] 李文超, 石寒松, 王琦, 等. 硫自养反硝化技术在污废水处理中应用研究进展 [J]. 水处理技术, 2017, 43(8): 1-6. LI W C, SHI H S, WANG Q, et al. Application progress of sulfur-autotrophic denitrification technology in wastewater treatment [J]. Technology of Water Treatment, 2017, 43(8): 1-6(in Chinese).
[5] 姚鹏程, 袁怡, 龙震宇, 等. 单质硫自养反硝化研究现状及展望 [J]. 现代化工, 2018, 38(6): 28-32. YAO P C, YUAN Y, LONG Z Y, et al. Status and prospects of researches on autotrophic denitrification of elemental sulfur [J]. Modern Chemical Industry, 2018, 38(6): 28-32(in Chinese).
[6] LIANG J, CHEN N, TONG S, et al. Sulfur autotrophic denitrification (SAD) driven by homogeneous composite particles containing CaCO3−type kitchen waste for groundwater remediation [J]. Chemosphere, 2018, 212: 954-963. doi: 10.1016/j.chemosphere.2018.08.161 [7] ZHU T T, CHENG H Y, YANG L H, et al. Coupled sulfur and iron(Ⅱ) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal [J]. Environmental Science & Technology, 2019, 53(3): 1545-1554. [8] ANDERSEN M, KARI J, BORCH K, et al. Michaelis-Menten equation for degradation of insoluble substrate [J]. Mathematical Biosciences, 2018, 296: 93-97. doi: 10.1016/j.mbs.2017.11.011 [9] GHANE E, FAUSEY N R, BROWN L C. Modeling nitrate removal in a denitrification bed [J]. Water Research, 2015, 71: 294-305. doi: 10.1016/j.watres.2014.10.039 [10] HE X, XI B, WEI Z, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste [J]. Chemosphere, 2011, 82(4): 541-548. doi: 10.1016/j.chemosphere.2010.10.057 [11] 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究 [J]. 环境科学, 2016, 37(7): 2646-2651. LI X, MA H, HUANG Y, et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water [J]. Environmental Science, 2016, 37(7): 2646-2651(in Chinese).
[12] LI R, FENG C P, HU W W, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation [J]. Water Research, 2016, 89: 171-179. doi: 10.1016/j.watres.2015.11.044 [13] HU S H, WU Y G, ZHANG Y J, et al. Nitrate removal from groundwater by heterotrophic/autotrophic denitrification using easily degradable organics and nano-zero valent iron as co-electron donors [J]. Water Air and Soil Pollution, 2018, 229(3): 56. doi: 10.1007/s11270-018-3713-5 [14] 张稳. 基于硫铁矿自养反硝化同步去除二级出水中氮磷的研究[D]. 北京: 中国地质大学(北京), 2019. ZHANG W. Synchronous N and P removal by pyrite-based autotrophic denitrification from secondary effluent[D]. Beijing : China University of Geosciences (Beijing ), 2019(in Chinese).
[15] DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification [J]. Chemical Engineering Journal, 2019, 362: 922-937. doi: 10.1016/j.cej.2019.01.069 [16] 李志华, 曾金锋, 李胜, 等. 颗粒粒径与数量对硝化与反硝化过程的影响 [J]. 环境科学, 2012, 33(3): 903-909. LI Z H, ZENG J F, LI S, et al. Effect of size and number of aerobic granules on nitrification and denitrification [J]. Environmental Science, 2012, 33(3): 903-909(in Chinese).
[17] 安鹏, 杨凤林, 张捍民, 等. 不同粒径好氧颗粒污泥的性质比较 [J]. 给水排水, 2007, 33(z1): 45-49. doi: 10.3969/j.issn.1002-8471.2007.z1.012 AN P, YANG F L, ZHANG H M, et al. The comparison of different size of aerobic granular sludge’s properties [J]. Water & Wastewater Engineering, 2007, 33(z1): 45-49(in Chinese). doi: 10.3969/j.issn.1002-8471.2007.z1.012
[18] 马航, 朱强, 朱亮, 等. 单质硫颗粒尺寸及反应器类型对硫自养反硝化反应器启动的影响 [J]. 环境科学, 2016, 37(6): 2235-2242. MA H, ZHU Q, ZHU L, et al. Effect of element sulfur particle size and type of the reactor on start-up of sulfur-based autotrophic denitrification reactor [J]. Environmental Science, 2016, 37(6): 2235-2242(in Chinese).
[19] 陈浬, 王海, 黄韬, 等. 反硝化滤池深度处理污水厂尾水的效能研究 [J]. 中国给水排水, 2017, 33(13): 99-103. CHEN L, WANG H, HUANG T, et al. Treatment efficiency of secondary effluent of WWTP by denitrification filter [J]. China Water &Wastewater, 2017, 33(13): 99-103(in Chinese).
[20] KOSTRYTSIA A, PAPIRIO S, FRUNZO L, et al. Elemental sulfur-based autotrophic denitrification and denitritation: microbially catalyzed sulfur hydrolysis and nitrogen conversions [J]. Journal of Environmental Management, 2018, 211: 313-322. [21] 朱睿, 刘艳霖. 有机溶剂中尼龙布固定化木瓜蛋白酶动力学性能研究 [J]. 化工设计通讯, 2020, 46(8): 131-134. doi: 10.3969/j.issn.1003-6490.2020.08.087 ZHU R, LIU Y L. Kinetic characteristics of immobilized papain from neilon cloth in organic solvents [J]. Chemical Engineering Design Communications, 2020, 46(8): 131-134(in Chinese). doi: 10.3969/j.issn.1003-6490.2020.08.087
[22] 初志战, 陈纪鹏, 刘小林, 等. 醇类有机溶剂对木瓜蛋白酶催化活性的影响机理 [J]. 食品与生物技术学报, 2014, 33(10): 1112-1115. CHU Z Z, CHEN J P, LIU X L, et al. Effect on catalytic activity and conformation of papain with four kinds of organic solvent [J]. Journal of Food Science and Biotechnology, 2014, 33(10): 1112-1115(in Chinese).
[23] 董晓英, 李式军, 沈仁芳. 白菜不同品种对硝酸盐吸收积累差异原因初探 [J]. 园艺学报, 2003, 30(4): 470-472. doi: 10.3321/j.issn:0513-353X.2003.04.025 DONG X Y, LI S J, SHEN R F. The nitrate uptake and accumulation of Pak-choi [J]. Acta Horticulturae Sinica, 2003, 30(4): 470-472(in Chinese). doi: 10.3321/j.issn:0513-353X.2003.04.025
[24] 丁清华, 常刘伟. 进水中硝酸盐浓度对砂柱脱氮的影响 [J]. 广州化工, 2014, 42(2): 69-70. doi: 10.3969/j.issn.1001-9677.2014.02.025 DING Q H, CHANG L W. Effect of influent nitrate concentration on denitrification in sand column [J]. Guangzhou Chemical Industry, 2014, 42(2): 69-70(in Chinese). doi: 10.3969/j.issn.1001-9677.2014.02.025
[25] PAN Y, NI B J, YUAN Z. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification [J]. Environmental Science & Technology, 2013, 47(19): 11083-11091. [26] 张庆芳, 李美玉, 王晓辉, 等. 微生物亚硝酸盐还原酶的研究进展 [J]. 微生物学通报, 2019, 46(11): 3148-3157. ZHANG Q F, LI M Y, WANG X H, et al. Research progress of microbial nitrite reductase [J]. Microbiology China, 2019, 46(11): 3148-3157(in Chinese).
[27] 艾小凡, 王鹤立, 陈祥龙. 地下水硝酸盐污染生物修复中的亚硝态氮积累研究 [J]. 环境工程, 2014, 32(1): 33-36. AI X F, WANG H L, CHEN X L. Experiment research on the problem of nitrite accumulation in groundwater during biological denitrification. [J]. Water Pollution Control, 2014, 32(1): 33-36(in Chinese).
[28] KUYPERS M M, MARCHANT H K, BORAN K. The microbial nitrogen-cycling network[J]. Nature Reviews. Microbiology, 2018, 16(5): 263-276. [29] 张新艳, 彭党聪, 万琼, 等. 活性污泥中硝酸盐异化还原成铵(DNRA)过程及其影响因素 [J]. 环境保护前沿, 2018, 8(2): 95-105. doi: 10.12677/AEP.2018.82012 ZHANG X Y, PENG D C, WAN Q, et al. Dominant factors of dissimilatory nitrate reduction to ammonia (DNRA) in activated sludge system: A comment [J]. Advances in Environmental Protection, 2018, 8(2): 95-105(in Chinese). doi: 10.12677/AEP.2018.82012