[1]
|
杜明辉, 王勇, 高群丽, 等. 臭氧微气泡处理有机废水的效果与机制 [J]. 化工进展, 2021, 40(12): 6907-6915.
DU M H, WANG Y, GAO Q L, et al. Mechanism and efficiency of ozone microbubble treatment of organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6907-6915(in Chinese).
Google Scholar
Pub Med
|
[2]
|
李珏秀, 刘纪林, 杨草原, 等. 微生物燃料电池辅助转盘液膜光催化降解染料废水 [J]. 中原工学院学报, 2022, 33(2): 51-57.
LI J X, LIU J L, YANG C Y, et al. Degradation of dye wastewater by microbial fuel cell assisting rotating disk thin-film photocatalysis integrated system [J]. Journal of Zhongyuan University of Technology, 2022, 33(2): 51-57(in Chinese).
Google Scholar
Pub Med
|
[3]
|
申大伟. 锰基催化剂对印染废水的降解研究 [J]. 印染助剂, 2022, 39(5): 21-26.
SHEN D W. Degradation of printing and dyeing wastewater by Manganese based catalyst [J]. Textile Auxiliaries, 2022, 39(5): 21-26(in Chinese).
Google Scholar
Pub Med
|
[4]
|
王渊源, 阎鑫, 艾涛, 等. 碳化泡沫负载Co3O4活化过硫酸盐降解罗丹明B [J]. 环境科学, 2022, 43(4): 2039-2046.
WANG Y Y, YAN X, AI T, et al. Carbonized foam supported Co3O4 activated peroxymonosulfate towards rhodamine B degradation [J]. Environmental Science, 2022, 43(4): 2039-2046(in Chinese).
Google Scholar
Pub Med
|
[5]
|
吴健森, 孟耀庭, 潘月燕, 等. 亚临界水氧化技术处理高盐难降解有机废水研究进展 [J]. 能源环境保护, 2022, 36(3): 30-36. doi: 10.3969/j.issn.1006-8759.2022.03.005
WU J S, MENG Y T, PAN Y Y, et al. Research progress in the treatment of refractory organic wastewater with high salinity by subcritical water oxidation technology [J]. Energy Environmental Protection, 2022, 36(3): 30-36(in Chinese). doi: 10.3969/j.issn.1006-8759.2022.03.005
CrossRef Google Scholar
Pub Med
|
[6]
|
马博雅, 孙立坤, 杨春维. 碳中和背景下我国污水处理技术思考 [J]. 应用化工, 2022, 51(10): 2997-3000.
MA B Y, SUN L K, YANG C W. The feasible wastewater treatment technology in China under the background of carbon neutrality [J]. Applied Chemical Industry, 2022, 51(10): 2997-3000(in Chinese).
Google Scholar
Pub Med
|
[7]
|
孙小淇, 郝泽伟, 陈家斌, 等. 碳中和背景下高盐废水中盐分的高效分离和资源化 [J]. 工业水处理, 2023, 43(2): 14-22.
SUN X Q, HAO Z W, CHEN J B, et al. Efficient separation and resource recovery technology of salts in highly saline wastewater in the context of carbon neutrality [J]. Industrial Water Treatment, 2023, 43(2): 14-22(in Chinese).
Google Scholar
Pub Med
|
[8]
|
吴百苗, 张一梅, 栗帅, 等. 基于LCA的污水处理方案碳中和综合影响评价 [J]. 环境工程, 2022, 40(6): 130-137.
WU B M, ZHANG Y M, LI S, et al. Comprehensive impact assessment on carbon neutralization of wastewater treatment plants based on hybrid LCA [J]. Environmental Engineering, 2022, 40(6): 130-137(in Chinese).
Google Scholar
Pub Med
|
[9]
|
GLAZE W H, KANG J W, CHAPIN D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation [J]. Ozone:Science & Engineering, 1987, 9(4): 335-352.
Google Scholar
Pub Med
|
[10]
|
WEI Y, MIAO J, GE J X, et al. Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(III) formation and preferential electron transfer during degradation of phenols [J]. Environmental Science & Technology, 2022, 56(12): 8984-8992.
Google Scholar
Pub Med
|
[11]
|
齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展 [J]. 化工进展, 2022, 41(12): 6627-6643.
QI Y B. Research progress on degradation of antibiotics by activated persulfate advanced oxidation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643(in Chinese).
Google Scholar
Pub Med
|
[12]
|
邵强, 郭轶琼. 铁锰催化剂活化过硫酸盐去除水中苯酚的研究 [J]. 工业水处理, 2020, 40(7): 94-97.
SHAO Q, GUO Y Q. Removal of phenol from water by activation of persulfate with Fe-Mn catalyst [J]. Industrial Water Treatment, 2020, 40(7): 94-97(in Chinese).
Google Scholar
Pub Med
|
[13]
|
王庆宏, 李思雨, 牛皓, 等. 活化过硫酸盐氧化处理难降解废水的技术研究进展 [J]. 工业水处理, 2022, 42(8): 8-16,26.
WANG Q H, LI S Y, NIU H, et al. An overview of activated persulfate oxidation processes in treatment of refractory wastewaters [J]. Industrial Water Treatment, 2022, 42(8): 8-16,26(in Chinese).
Google Scholar
Pub Med
|
[14]
|
杨鹤云, 郑兴. 高级氧化法降解有机污染物的应用及研究进展 [J]. 水处理技术, 2021, 47(12): 13-18.
YANG H Y, ZHENG X. Application and research progress of advanced oxidation process for degradation of organic pollutants [J]. Technology of Water Treatment, 2021, 47(12): 13-18(in Chinese).
Google Scholar
Pub Med
|
[15]
|
杨淼淼. 高级氧化技术处理印染废水的研究进展 [J]. 生物化工, 2022, 8(1): 149-152.
YANG M M. Research progress of advanced oxidation process for dyeing wastewater treatment based on free radical [J]. Biological Chemical Engineering, 2022, 8(1): 149-152(in Chinese).
Google Scholar
Pub Med
|
[16]
|
JIANG S F, LING L L, CHEN W J, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors [J]. Chemical Engineering Journal, 2019, 359: 572-583. doi: 10.1016/j.cej.2018.11.124
CrossRef Google Scholar
Pub Med
|
[17]
|
OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol [J]. Chemical Engineering Journal, 2013, 224: 10-16. doi: 10.1016/j.cej.2012.11.007
CrossRef Google Scholar
Pub Med
|
[18]
|
ZHANG X W, LAN M Y, WANG F, et al. ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107997. doi: 10.1016/j.jece.2022.107997
CrossRef Google Scholar
Pub Med
|
[19]
|
LIU Y H, KUO Y S, LIU W C. et al. Photoelectrocatalytic activity of perovskite YFeO3/carbon fiber composite electrode under visible light irradiation for organic wastewater treatment [J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128: 227-236. doi: 10.1016/j.jtice.2021.08.029
CrossRef Google Scholar
Pub Med
|
[20]
|
马祯, 宋小三, 张轩. 紫外/过硫酸盐高级氧化技术在饮用水处理中的研究进展 [J]. 应用化工, 2022, 51(5): 1466-1471.
MA Z, SONG X S, ZHANG X. Research progress of ultraviolet/persulfate advanced oxidation technology in drinking water treatment [J]. Applied Chemical Industry, 2022, 51(5): 1466-1471(in Chinese).
Google Scholar
Pub Med
|
[21]
|
王静, 邓黎玲, 薛罡, 等. 物化-生化-高级氧化处理涂料废渣热催化废液 [J]. 水处理技术, 2019, 45(10): 100-105.
WANG J, DENG L L, XUE G, et al. Physicochemical-biochemical advanced treatment for paint sludge thermocatalytic waste liquor [J]. Technology of Water Treatment, 2019, 45(10): 100-105(in Chinese).
Google Scholar
Pub Med
|
[22]
|
吴秀, 方迪, 危亚云, 等. 热活化过一硫酸盐调理强化厌氧消化污泥脱水的研究 [J]. 环境科学学报, 2021, 41(11): 4547-4553.
WU X, FANG D, WEI Y Y, et al. Improved dewaterability of anaerobically digested sewage sludge by thermally activated peroxymonosulfate [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4547-4553(in Chinese).
Google Scholar
Pub Med
|
[23]
|
LONG L L, BAI C W, ZHOU X Y, et al. A novel strategy for promoting PMS activation: Enhanced utilization of side reactions [J]. Separation and Purification Technology, 2022, 297: 121432. doi: 10.1016/j.seppur.2022.121432
CrossRef Google Scholar
Pub Med
|
[24]
|
程佳鑫, 李荣兴, 杨海涛, 等. 三维电催化氧化处理难生化降解有机废水研究进展 [J]. 环境化学, 2022, 41(1): 288-304. doi: 10.7524/j.issn.0254-6108.2020082804
CHENG J X, LI R X, YANG H T, et al. Review of three-dimensional electrodes for bio-refractory organic wastewater treatment [J]. Environmental Chemistry, 2022, 41(1): 288-304(in Chinese). doi: 10.7524/j.issn.0254-6108.2020082804
CrossRef Google Scholar
Pub Med
|
[25]
|
左静, 秦丰林, 方国东. 电化学活化过硫酸盐修复土壤有机污染研究进展 [J]. 现代农业科技, 2021(13): 179-185.
ZUO J, QIN F L, FANG G D. Research progress on remediation of soil organic pollution by electrochemical activation of persulfate [J]. Modern Agricultural Science and Technology, 2021(13): 179-185(in Chinese).
Google Scholar
Pub Med
|
[26]
|
杨晴, 孙昕, 李鹏飞, 等. 超声活化过硫酸盐降解甲基橙的影响因素研究 [J]. 环境科学学报, 2020, 40(8): 2715-2721.
YANG Q, SUN X, LI P F, et al. Influencing factors of methyl orange degradation by ultrasound activated persulfate [J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2715-2721(in Chinese).
Google Scholar
Pub Med
|
[27]
|
张楠, 陈蕾. 超声活化过硫酸盐降解废水中有机污染物的研究进展 [J]. 应用化工, 2021, 50(10): 2805-2808,2813.
ZHANG N, CHEN L. Research progress of ultrasonic activated persulfate for degradation of organic pollutants in wastewater [J]. Applied Chemical Industry, 2021, 50(10): 2805-2808,2813(in Chinese).
Google Scholar
Pub Med
|
[28]
|
朱佳, 宋慧, 高敏, 等. 超声协同MoS2/g-C3N4活化过硫酸盐降解二甲基亚砜的研究 [J]. 化工新型材料, 2022, 50(9): 179-184,190.
ZHU J, SONG H, GAO M, et al. Degradation of dimethyl sulfoxide by ultrasonic synergistic [J]. New Chemical Materials, 2022, 50(9): 179-184,190(in Chinese).
Google Scholar
Pub Med
|
[29]
|
张磊, 祝思频, 张青青, 等. 微波活化过硫酸盐降解典型选矿药剂水杨羟肟酸 [J]. 环境化学, 2022, 41(8): 3414-3424. doi: 10.7524/j.issn.0254-6108.2021030801
ZHANG L, ZHU S P, ZHANG Q Q, et al. Degradation of salicylhydroxamic acid by microwave activated persulfate [J]. Environmental Chemistry, 2022, 41(8): 3414-3424(in Chinese). doi: 10.7524/j.issn.0254-6108.2021030801
CrossRef Google Scholar
Pub Med
|
[30]
|
程爱华, 马万超, 徐哲. 等离子体改性海绵铁活化过硫酸盐处理含酚废水 [J]. 化工进展, 2020, 39(2): 798-804.
CHENG A H, MA W C, XU Z. Treatment of phenol wastewater with persulfate activated by plasmamodified sponge iron [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 798-804(in Chinese).
Google Scholar
Pub Med
|
[31]
|
李春琴, 邹亚辰, 贾小宁. 过硫酸盐高级氧化技术活化方法及降解机理的研究进展 [J]. 化学与生物工程, 2022, 39(6): 1-6,27.
LI C Q, ZOU Y C, JIA X N. Research progress in activation methods of persulfate and degradation mechanism of organic pollutants by persulfate advanced oxidation process [J]. Chemistry & Bioengineering, 2022, 39(6): 1-6,27(in Chinese).
Google Scholar
Pub Med
|
[32]
|
凌良雄, 陆建, 周易, 等. 铁基材料活化过硫酸盐降解水中抗生素的研究进展 [J]. 环境科学研究, 2022, 35(1): 290-298.
LING L X, LU J, ZHOU Y, et al. Persulfate activated by iron-based materials for degradation of antibiotics in water: A review [J]. Research of Environmental Sciences, 2022, 35(1): 290-298(in Chinese).
Google Scholar
Pub Med
|
[33]
|
田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展 [J]. 化工进展, 2021, 40(6): 3480-3488.
TIAN T T, LI C Y, WANG S D, et al. Research progress of transition metal activated persulfate to degrade organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488(in Chinese).
Google Scholar
Pub Med
|
[34]
|
李书典, 郑德山, 郭峰. 二氧化锰催化氧化性能的研究进展 [J]. 现代化工, 2020, 40(3): 52-56.
LI S D, ZHENG D S, GUO F. Research progress on catalytic oxidation performance of Manganese dioxide [J]. Modern Chemical Industry, 2020, 40(3): 52-56(in Chinese).
Google Scholar
Pub Med
|
[35]
|
周自成, 刘悦, 李英, 等. 纳米Mn3O4的快速制备及其对亚甲基蓝的类芬顿催化氧化性能 [J]. 矿冶工程, 2020, 40(4): 153-155,160.
ZHOU Z C, LIU Y, LI Y, et al. Simple and rapid preparation of nano-Mn3O4 and its Fenton-like catalytic oxidation of methylene blue [J]. Mining and Metallurgical Engineering, 2020, 40(4): 153-155,160(in Chinese).
Google Scholar
Pub Med
|
[36]
|
张磊, 王胜, 汪明哲, 等. CoMnOx/Al2O3/monolith整体催化剂的制备及其催化臭氧分解性能 [J]. 工业催化, 2020, 28(1): 17-23.
ZHANG L, WANG S, WANG M Z, et al. Preparation of CoMnOx/Al2O3/monolith catalyst for ozone elimination [J]. Industrial Catalysis, 2020, 28(1): 17-23(in Chinese).
Google Scholar
Pub Med
|
[37]
|
FU R, ZHANG P S, JIANG Y X, et al. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods [J]. Chemosphere, 2023, 311: 136993. doi: 10.1016/j.chemosphere.2022.136993
CrossRef Google Scholar
Pub Med
|
[38]
|
LIN C, LI J L, LI X P, et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation [J]. Nature Catalysis, 2021, 4(12): 1012-1023. doi: 10.1038/s41929-021-00703-0
CrossRef Google Scholar
Pub Med
|
[39]
|
ZHOU Y, FENG S, DUAN X M, et al. MnO2/UIO-66 improves the catalysed degradation of oxytetracycline under UV/H2O2/PMS system [J]. Journal of Solid State Chemistry, 2021, 300: 122231. doi: 10.1016/j.jssc.2021.122231
CrossRef Google Scholar
Pub Med
|
[40]
|
GUO M N, FANG R M, LIU X W, et al. Experimental study of volatile organic compounds catalytic combustion on Cu-Mn catalysts with different carriers [J]. International Journal of Energy Research, 2021, 45(6): 8749-8762. doi: 10.1002/er.6411
CrossRef Google Scholar
Pub Med
|
[41]
|
QIN C H, GUO M K, JIANG C C, et al. Simultaneous oxidation of toluene and ethyl acetate by dielectric barrier discharge combined with Fe, Mn and Mo catalysts [J]. Science of the Total Environment, 2021, 782: 146931. doi: 10.1016/j.scitotenv.2021.146931
CrossRef Google Scholar
Pub Med
|
[42]
|
向宁, 韩小金, 郑剑锋, 等. 锰改性对ZIF-67衍生Co3O4低温催化氧化甲醛性能的影响 [J]. 燃料化学学报, 2022, 50(7): 859-867.
XIANG N, HAN X J, ZHENG J F, et al. Effect of Manganese modification on catalytic oxidation of formaldehyde at low temperature by Co3O4 derived from ZIF-67 [J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 859-867(in Chinese).
Google Scholar
Pub Med
|
[43]
|
DING Y B, WANG X R, FU L B, et al. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective [J]. Science of the Total Environment, 2021, 765: 142794. doi: 10.1016/j.scitotenv.2020.142794
CrossRef Google Scholar
Pub Med
|
[44]
|
WACLAWEK S, LUTZE H V, GRüBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review [J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132
CrossRef Google Scholar
Pub Med
|
[45]
|
XIAO J Y, LI R, DONG H R, et al. Activation of sulfite via zero-valent iron-Manganese bimetallic nanomaterials for enhanced sulfamethazine removal in aqueous solution: Key roles of Fe/Mn molar ratio and solution pH [J]. Separation and Purification Technology, 2022, 297: 121479. doi: 10.1016/j.seppur.2022.121479
CrossRef Google Scholar
Pub Med
|
[46]
|
SHAH N S, ALI KHAN J, SAYED M, et al. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent Manganese catalyzed S2O82− [J]. Chemical Engineering Journal, 2019, 356: 199-209. doi: 10.1016/j.cej.2018.09.009
CrossRef Google Scholar
Pub Med
|
[47]
|
YANG Y S, ZHAO Y, ZONG Y, et al. Activation of peroxymonosulfate by α-MnO2 for Orange Ⅰ removal in water [J]. Environmental Research, 2022, 210: 112919. doi: 10.1016/j.envres.2022.112919
CrossRef Google Scholar
Pub Med
|
[48]
|
XU X M, ZHANG Y Q, ZHOU S Q, et al. Activation of persulfate by MnOOH: Degradation of organic compounds by nonradical mechanism [J]. Chemosphere, 2021, 272: 129629. doi: 10.1016/j.chemosphere.2021.129629
CrossRef Google Scholar
Pub Med
|
[49]
|
ZHAO M J, XU R S, CHEN Z Q, et al. Kinetics and mechanisms of diniconazole degradation by α-MnO2 activated peroxymonosulfate [J]. Separation and Purification Technology, 2022, 281: 119850. doi: 10.1016/j.seppur.2021.119850
CrossRef Google Scholar
Pub Med
|
[50]
|
刘畅, 王宇寒, 胡清, 等. 太阳光/CuMnFe LDHs催化剂/过一硫酸盐体系降解双酚A [J]. 环境工程学报, 2021, 15(11): 3545-3560.
LIU C, WANG Y H, HU Q, et al. Degradation of bisphenol A using CuMnFe LDHs catalyst and peroxymonosulfate under solar light [J]. Chinese Journal of Environmental Engineering, 2021, 15(11): 3545-3560(in Chinese).
Google Scholar
Pub Med
|
[51]
|
李广英, 杜敏洁, 谈成英, 等. 锰铁氧体活化PMS降解双酚A的过程机制 [J]. 环境工程学报, 2021, 15(9): 2952-2962.
LI G Y, DU M J, TAN C Y, et al. Mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts [J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2952-2962(in Chinese).
Google Scholar
Pub Med
|
[52]
|
HU L X, DENG G H, LU W C, et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B [J]. Chinese Journal of Catalysis, 2017, 38(8): 1360-1372. doi: 10.1016/S1872-2067(17)62875-4
CrossRef Google Scholar
Pub Med
|
[53]
|
CHEN G, ZHANG X Y, GAO Y J, et al. Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants [J]. Separation and Purification Technology, 2019, 213: 456-464. doi: 10.1016/j.seppur.2018.12.049
CrossRef Google Scholar
Pub Med
|
[54]
|
ZHAO Y L, WANG H, JI J Q, et al. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/Manganese-containing catalysts with inter-valence cobalt/Manganese synergistic effect for peroxymonosulfate activation [J]. Journal of Colloid and Interface Science, 2022, 626: 564-580. doi: 10.1016/j.jcis.2022.06.112
CrossRef Google Scholar
Pub Med
|
[55]
|
XU L S, SUN X B, HONG J M, et al. Peroxymonosulfate activation by α-MnO2/MnFe2O4 for norfloxacin degradation: Efficiency and mechanism [J]. Journal of Physics and Chemistry of Solids, 2021, 153: 110029. doi: 10.1016/j.jpcs.2021.110029
CrossRef Google Scholar
Pub Med
|
[56]
|
毛韦达, 胡翔. La0.5Sr0.5Co0.8Mn0.2O3-δ钙钛矿对过一硫酸盐降解水中四溴双酚A影响实验研究 [J]. 地学前缘, 2019, 26(3): 255-262.
MAO W D, HU X. Exoerinentai studies of the effect of perovskite La0.5Sr0.5Co0.8Mn0.2O3-δ on tetrabromobisphenol A degradation in water by peroxy-monosulfate [J]. Earth Science Frontiers, 2019, 26(3): 255-262(in Chinese).
Google Scholar
Pub Med
|
[57]
|
NIE Y L, ZHOU H, TIAN S, et al. Anionic ligands driven efficient ofloxacin degradation over LaMnO3 suspended particles in water due to the enhanced peroxymonosulfate activation [J]. Chemical Engineering Journal, 2022, 427: 130998. doi: 10.1016/j.cej.2021.130998
CrossRef Google Scholar
Pub Med
|
[58]
|
LIANG J X, GUO M M, XUE Y X, et al. Constructing magnetically separable Manganese-based spinel ferrite from spent ternary lithium-ion batteries for efficient degradation of bisphenol A via peroxymonosulfate activation [J]. Chemical Engineering Journal, 2022, 435: 135000. doi: 10.1016/j.cej.2022.135000
CrossRef Google Scholar
Pub Med
|
[59]
|
DU J Y, XU W S, LIU J, et al. Efficient degradation of Acid Orange 7 by persulfate activated with a novel developed carbon-based MnFe2O4 composite catalyst [J]. Journal of Chemical Technology & Biotechnology, 2020, 95(4): 1135-1145.
Google Scholar
Pub Med
|
[60]
|
HUANG D L, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline [J]. Chemical Engineering Journal, 2020, 391: 123532. doi: 10.1016/j.cej.2019.123532
CrossRef Google Scholar
Pub Med
|
[61]
|
YANG Z, WANG Z W, LIANG G W, et al. Catalyst bridging-mediated electron transfer for nonradical degradation of bisphenol A via natural Manganese ore-cornstalk biochar composite activated peroxymonosulfate [J]. Chemical Engineering Journal, 2021, 426: 131777. doi: 10.1016/j.cej.2021.131777
CrossRef Google Scholar
Pub Med
|
[62]
|
HUANG C, WANG Y L, GONG M, et al. α-MnO2/Palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B [J]. Separation and Purification Technology, 2020, 230: 115877. doi: 10.1016/j.seppur.2019.115877
CrossRef Google Scholar
Pub Med
|
[63]
|
WANG Z X, HAN Y F, FAN W L, et al. Shell-core MnO2/Carbon@Carbon nanotubes synthesized by a facile one-pot method for peroxymonosulfate oxidation of tetracycline [J]. Separation and Purification Technology, 2021, 278: 119558. doi: 10.1016/j.seppur.2021.119558
CrossRef Google Scholar
Pub Med
|
[64]
|
LI Y T, LI H S, LIU F L, et al. Zero-valent iron-Manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: Materials characterization, process optimization and removal mechanisms [J]. Journal of Hazardous Materials, 2020, 386: 121900. doi: 10.1016/j.jhazmat.2019.121900
CrossRef Google Scholar
Pub Med
|
[65]
|
DADA A O, ADEKOLA F A, ODEBUNMI E O. Liquid phase scavenging of Cd (II) and Cu (II) ions onto novel nanoscale zerovalent Manganese (nZVMn): Equilibrium, kinetic and thermodynamic studies [J]. Environmental Nanotechnology, Monitoring & Management, 2017, 8: 63-72.
Google Scholar
Pub Med
|
[66]
|
PANDA A P, ROUT P, JENA K K, et al. Core–shell structured zero-valent Manganese (ZVM): A novel nanoadsorbent for efficient removal of As(iii) and As(v) from drinking water [J]. Journal of Materials Chemistry A, 2019, 7(16): 9933-9947. doi: 10.1039/C9TA00428A
CrossRef Google Scholar
Pub Med
|
[67]
|
贺君, 陈思琦, 唐首锋, 等. MnO2/EGM电极制备及电化学降解罗丹明B的研究 [J]. 环境科学学报, 2020, 40(11): 3922-3930.
HE J, CHEN S Q, TANG S F, et al. Preparation of MnO2/EGM electrode and electrochemical degradation of Rhodamine B [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3922-3930(in Chinese).
Google Scholar
Pub Med
|
[68]
|
SHEN S T, ZHOU X Q, ZHAO Q D, et al. Understanding the nonradical activation of peroxymonosulfate by different crystallographic MnO2: The pivotal role of MnIII content on the surface [J]. Journal of Hazardous Materials, 2022, 439: 129613. doi: 10.1016/j.jhazmat.2022.129613
CrossRef Google Scholar
Pub Med
|
[69]
|
NDAYIRAGIJE S, ZHANG Y F, ZHOU Y Q, et al. Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate [J]. Applied Catalysis B:Environmental, 2022, 307: 121168. doi: 10.1016/j.apcatb.2022.121168
CrossRef Google Scholar
Pub Med
|
[70]
|
YI H L, WANG Y H, DIAO L L, et al. Ultrasonic treatment enhances the formation of oxygen vacancies and trivalent Manganese on α-MnO2 surfaces: Mechanism and application [J]. Journal of Colloid and Interface Science, 2022, 626: 629-638. doi: 10.1016/j.jcis.2022.06.144
CrossRef Google Scholar
Pub Med
|
[71]
|
LI M, ZHANG H, LIU Z L, et al. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation [J]. Chemical Engineering Journal, 2022, 450: 138147. doi: 10.1016/j.cej.2022.138147
CrossRef Google Scholar
Pub Med
|
[72]
|
OUYANG H, WU C, QIU X H, et al. New insight of Mn(III) in δ-MnO2 for peroxymonosulfate activation reaction: Via direct electron transfer or via free radical reactions [J]. Environmental Research, 2023, 217: 114874. doi: 10.1016/j.envres.2022.114874
CrossRef Google Scholar
Pub Med
|
[73]
|
ZHOU Z G, DU H M, DAI Z H, et al. Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms [J]. Chemical Engineering Journal, 2019, 374: 170-180. doi: 10.1016/j.cej.2019.05.170
CrossRef Google Scholar
Pub Med
|
[74]
|
王淑敏, 林海龙, 侯俊斌, 等. MnO2的生长机理及其对罗丹明B的快速降解 [J]. 材料科学与工程学报, 2022, 40(1): 34-39.
WANG S M, LIN H L, HOU J B, et al. Growth mechanism of MnO2 and its rapid degradation of rhodamine B [J]. Journal of Materials Science and Engineering, 2022, 40(1): 34-39(in Chinese).
Google Scholar
Pub Med
|
[75]
|
闵弘扬, 王赟, 冉献强, 等. Cu-Mn/ZSM-5催化剂的制备及其催化降解酸性红的研究 [J]. 工业用水与废水, 2015, 46(1): 52-56,64.
MIN H Y, WANG Y, RAN X Q, et al. Study on Cu-Mn/ZSM-5 catalyst preparation and its catalytic degradation performance on acid red [J]. Industrial Water & Wastewater, 2015, 46(1): 52-56,64(in Chinese).
Google Scholar
Pub Med
|
[76]
|
GHASEMI H, MOZAFFARI S, MOUSAVI S H, et al. Decolorization of wastewater by heterogeneous Fenton reaction using MnO2-Fe3O4/CuO hybrid catalysts [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105091. doi: 10.1016/j.jece.2021.105091
CrossRef Google Scholar
Pub Med
|
[77]
|
LIU M, YIN W, ZHAO T L, et al. High-efficient removal of organic dyes from model wastewater using Mg(OH)2-MnO2 nanocomposite: Synergistic effects of adsorption, precipitation, and photodegradation [J]. Separation and Purification Technology, 2021, 272: 118901. doi: 10.1016/j.seppur.2021.118901
CrossRef Google Scholar
Pub Med
|
[78]
|
PANIMALAR S, SUBASH M, CHANDRASEKAR M, et al. Reproducibility and long-term stability of Sn doped MnO2 nanostructures: Practical photocatalytic systems and wastewater treatment applications [J]. Chemosphere, 2022, 293: 133646. doi: 10.1016/j.chemosphere.2022.133646
CrossRef Google Scholar
Pub Med
|
[79]
|
THAO L T, van NGUYEN T, NGUYEN V Q, et al. Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid [J]. Journal of Environmental Sciences, 2023, 124: 379-396. doi: 10.1016/j.jes.2021.10.008
CrossRef Google Scholar
Pub Med
|
[80]
|
SHI Q Q, PU S Y, YANG X, et al. Enhanced heterogeneous activation of peroxymonosulfate by boosting internal electron transfer in a bimetallic Fe3O4-MnO2 nanocomposite [J]. Chinese Chemical Letters, 2022, 33(4): 2129-2133. doi: 10.1016/j.cclet.2021.07.063
CrossRef Google Scholar
Pub Med
|
[81]
|
ANUSHREE C, NANDA GOPALA KRISHNA D, PHILIP J. Efficient dye degradation via catalytic persulfate activation using iron oxide-Manganese oxide core-shell particle doped with transition metal ions [J]. Journal of Molecular Liquids, 2021, 337: 116429. doi: 10.1016/j.molliq.2021.116429
CrossRef Google Scholar
Pub Med
|
[82]
|
WANG Z M, WANG Z H, LI W, et al. Performance comparison and mechanism investigation of Co3O4-modified different crystallographic MnO2 (α, β, γ, and δ) as an activator of peroxymonosulfate (PMS) for sulfisoxazole degradation [J]. Chemical Engineering Journal, 2022, 427: 130888. doi: 10.1016/j.cej.2021.130888
CrossRef Google Scholar
Pub Med
|
[83]
|
JIANG Z R, WANG P F, ZHOU Y X, et al. Fabrication of a 3D-blocky catalyst (CoMnOx@sponge) via mooring Co-Mn bimetallic oxide on sponge to activate peroxymonosulfate for convenient and efficient degradation of sulfonamide antibiotics [J]. Chemical Engineering Journal, 2022, 446: 137306. doi: 10.1016/j.cej.2022.137306
CrossRef Google Scholar
Pub Med
|
[84]
|
CHEN L, MAQBOOL T, NAZIR G, et al. Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation [J]. Water Research, 2023, 229: 119444. doi: 10.1016/j.watres.2022.119444
CrossRef Google Scholar
Pub Med
|
[85]
|
ZHAO Y, LI B, LI Y, et al. Synergistic activation of peroxymonosulfate between Co and MnO for bisphenol A degradation with enhanced activity and stability [J]. Journal of Colloid and Interface Science, 2022, 623: 775-786. doi: 10.1016/j.jcis.2022.05.105
CrossRef Google Scholar
Pub Med
|
[86]
|
CHEN L J, LI Y H, ZHANG J W, et al. Oxidative degradation of tetracycline hydrochloride by Mn2O3/Bi2O3 photocatalysis activated peroxymonosulfate [J]. Inorganic Chemistry Communications, 2022, 140: 109414. doi: 10.1016/j.inoche.2022.109414
CrossRef Google Scholar
Pub Med
|
[87]
|
WANG L H, XU H D, JIANG N, et al. Effective activation of peroxymonosulfate with natural Manganese-containing minerals through a nonradical pathway and the application for the removal of bisphenols [J]. Journal of Hazardous Materials, 2021, 417: 126152. doi: 10.1016/j.jhazmat.2021.126152
CrossRef Google Scholar
Pub Med
|
[88]
|
HE B, YANG Y, LIU B R, et al. Degradation of chlortetracycline hydrochloride by peroxymonosulfate activation on natural Manganese sand through response surface methodology [J]. Environmental Science and Pollution Research, 2022, 29(54): 82584-82599. doi: 10.1007/s11356-022-21556-5
CrossRef Google Scholar
Pub Med
|
[89]
|
CHEN T, ZHU Z L, WANG Z Y, et al. 3D hollow sphere-like Cu-incorporated LaAlO3 perovskites for peroxymonosulfate activation: Coaction of electron transfer and oxygen defect [J]. Chemical Engineering Journal, 2020, 385: 123935. doi: 10.1016/j.cej.2019.123935
CrossRef Google Scholar
Pub Med
|
[90]
|
FAYYAZ A, SARAVANAKUMAR K, TALUKDAR K, et al. Catalytic oxidation of naproxen in cobalt spinel ferrite decorated Ti3C2Tx MXene activated persulfate system: Mechanisms and pathways [J]. Chemical Engineering Journal, 2021, 407: 127842. doi: 10.1016/j.cej.2020.127842
CrossRef Google Scholar
Pub Med
|
[91]
|
HUANG M J, PENG S S, XIANG W, et al. Strong metal-support interaction between carbon nanotubes and Mn-Fe spinel oxide in boosting peroxymonosulfate activation: Underneath mechanisms and application [J]. Chemical Engineering Journal, 2022, 429: 132372. doi: 10.1016/j.cej.2021.132372
CrossRef Google Scholar
Pub Med
|
[92]
|
MANOS D, MISERLI K, KONSTANTINOU I. Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems [J]. Catalysts, 2020, 10(11): 1299. doi: 10.3390/catal10111299
CrossRef Google Scholar
Pub Med
|
[93]
|
UTAMA P S, WIDAYATNO W B, AZHAR M R, et al. LaMnO3 perovskite activation of peroxymonosulfate for catalytic palm oil mill secondary effluent degradation [J]. Journal of Applied Materials and Technology, 2020, 2(1): 27-35. doi: 10.31258/Jamt.2.1.27-35
CrossRef Google Scholar
Pub Med
|
[94]
|
WANG T, QIAN X F, YUE D T, et al. CaMnO3 perovskite nanocrystals for efficient peroxydisulfate activation [J]. Chemical Engineering Journal, 2020, 398: 125638. doi: 10.1016/j.cej.2020.125638
CrossRef Google Scholar
Pub Med
|
[95]
|
GAO P P, TIAN X K, FU W, et al. Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation [J]. Journal of Hazardous Materials, 2021, 411: 125163. doi: 10.1016/j.jhazmat.2021.125163
CrossRef Google Scholar
Pub Med
|
[96]
|
GUO J X, JING Y, SHEN T, et al. Effect of doped strontium on catalytic properties of La1‒xSrxMnO3 for rhodamine B degradation [J]. Journal of Rare Earths, 2021, 39(11): 1362-1369. doi: 10.1016/j.jre.2020.12.017
CrossRef Google Scholar
Pub Med
|
[97]
|
LUO H D, GUO J X, SHEN T, et al. Study on the catalytic performance of LaMnO3 for the RhB degradation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109: 15-25. doi: 10.1016/j.jtice.2020.01.011
CrossRef Google Scholar
Pub Med
|
[98]
|
JIANG Z R, LI Y X, ZHOU Y X, et al. Co3O4-MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics [J]. Separation and Purification Technology, 2022, 281: 119935. doi: 10.1016/j.seppur.2021.119935
CrossRef Google Scholar
Pub Med
|
[99]
|
YANG X, WEI G L, WU P Q, et al. Novel halloysite nanotube-based ultrafine CoMn2O4 catalyst for efficient degradation of pharmaceuticals through peroxymonosulfate activation [J]. Applied Surface Science, 2022, 588: 152899. doi: 10.1016/j.apsusc.2022.152899
CrossRef Google Scholar
Pub Med
|
[100]
|
NGUYEN T B, LE V R, HUANG C P, et al. Construction of ternary NiCo2O4/MnOOH/GO composite for peroxymonosulfate activation with enhanced catalytic activity toward ciprofloxacin degradation [J]. Chemical Engineering Journal, 2022, 446: 137326. doi: 10.1016/j.cej.2022.137326
CrossRef Google Scholar
Pub Med
|
[101]
|
WU Y H, LI Y L, HE J Y, et al. Nano-hybrids of needle-like MnO2 on graphene oxide coupled with peroxymonosulfate for enhanced degradation of norfloxacin: A comparative study and probable degradation pathway [J]. Journal of Colloid and Interface Science, 2020, 562: 1-11. doi: 10.1016/j.jcis.2019.11.121
CrossRef Google Scholar
Pub Med
|
[102]
|
PAN M, WANG N, WENG Z T, et al. The synergistic activation of peroxymonosulfate for the degradation of Acid Scarlet GR by palygorskite/MnO2/Fe3O4 nanocomposites [J]. Dalton Transactions (Cambridge, England:2003), 2023, 52(4): 1009-1020. doi: 10.1039/D2DT02998G
CrossRef Google Scholar
Pub Med
|
[103]
|
HU Y Y, SUN S Y, GUO J L, et al. In situ anchoring strategy to enhance dual nonradical degradation of sulfamethoxazole with high loading manganese doped carbon nitride [J]. Chemosphere, 2022, 303: 135035. doi: 10.1016/j.chemosphere.2022.135035
CrossRef Google Scholar
Pub Med
|
[104]
|
GONG Y X, WU Y N, SHEN J M, et al. Generation of interfacial high-spin Manganese intermediates as reactive oxidant during peroxymonosulfate activation mediated by amorphous MnOx supported on polymeric substrate [J]. Applied Catalysis B:Environmental, 2022, 316: 121671. doi: 10.1016/j.apcatb.2022.121671
CrossRef Google Scholar
Pub Med
|